Skip to main content

Bioproduction of Chemicals: An Introduction

  • Reference work entry
  • First Online:
  • 1162 Accesses

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

The successful transition of a petroleum-based economy to a more sustainable economy is highly dependent on the development of technologies that will meet the demands for the production of fuel and industrially important chemicals. Establishment of microorganism-based biorefineries is a promising route in realizing this goal through the application of metabolically engineered microorganisms capable of converting renewable biomasses to value-added chemicals. This review encompasses the constructed synthetic pathways and microbial strain improvement strategies developed to date for the direct production of building-block chemicals from renewable biomass.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Rahman MA, Xiao Y, Tashiro Y, Wang Y, Zendo T, Sakai K, Sonomoto K (2015) Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression. J Biosci Bioeng 119(2):153–158

    Article  CAS  PubMed  Google Scholar 

  • Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66

    Article  CAS  PubMed  Google Scholar 

  • Beauprez JJ, De Mey M, Soetaert WK (2010) Microbial succinic acid production: natural versus metabolic engineered producers. Process Biochem 45:1103–1114

    Article  CAS  Google Scholar 

  • Biddy MJ, Scarlata C, Kinchin C (2016) Chemicals from biomass: a market assessment of bioproducts with near-term potential (No. NREL/TP-5100-65509). NREL (National Renewable Energy Laboratory (NREL), Golden, CO

    Google Scholar 

  • Cammas S, Renard I, Langlois V, Guéri P (1996) Poly (β-malic acid): obtaining high molecular weights by improvement of the synthesis route. Polymer 37:4215–4220

    Article  CAS  Google Scholar 

  • Celińska E, Grajek W (2009) Biotechnological production of 2, 3-butanediol – current state and prospects. Biotechnol Adv 27:715–725

    Article  PubMed  Google Scholar 

  • Cheng K, Zhao X, Zeng J, Zhang (2012) Biotechnological production of succinic acid: current state and perspectives. Biofuel Bioprod Bior 6:302–318

    Google Scholar 

  • Cheng Z, Jiang J, Wu H, Li Z, Ye Q (2016) Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli. Bioresour Technol 200:897–904

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Song H, Lim SW, Kim TY, Ahn JH, Lee JW, Lee MH, Lee SY (2016) Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification. Biotechnol Bioeng

    Google Scholar 

  • Chu HS, Kim YS, Lee CM, Lee JH, Jung WS, Ahn JH, Song SH, Choi IS, Cho KM (2015) Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli. Biotechnol Bioeng 112:356–364

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Li K, Li L, Gao C, Zhang L, Ma C, Xu P (2016) Contracted but effective: production of enantiopure 2,3-butanediol by thermophilic and GRAS Bacillus licheniformis. Green Chem 18:4693–4703

    Article  CAS  Google Scholar 

  • Grabar TB, Zhou S, Shanmugam KT, Yomano LP, Ingram LO (2006) Methylglyoxal bypass identified as source of chiral contamination in L(+) and D(−)-lactate fermentations by recombinant Escherichia coli. Biotechnol Lett 28:1527–1535

    Article  CAS  PubMed  Google Scholar 

  • Ji XJ, Huang H, Ouyang PK (2011) Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364

    Article  CAS  PubMed  Google Scholar 

  • Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105:161–171

    Article  CAS  PubMed  Google Scholar 

  • Jung IY, Lee JW, Min WK, Park YC, Seo JH (2015) Simultaneous conversion of glucose and xylose to 3-hydroxypropionic acid in engineered Escherichia coli by modulation of sugar transport and glycerol synthesis. Bioresour Technol 198:709–716

    Article  CAS  PubMed  Google Scholar 

  • Kataoka N, Vangnai AS, Tajima T, Nakashimada Y, Kato J (2013) Improvement of (R)-1,3-butanediol production by engineered Escherichia coli. J Biosci Bioeng 115:475–480

    Article  CAS  PubMed  Google Scholar 

  • Kataoka N, Vangnai AS, Ueda H, Tajima T, Nakashimada Y, Kato J (2014) Enhancement of (R)-1,3-butanediol production by engineered Escherichia coli using a bioreactor system with strict regulation of overall oxygen transfer coefficient and pH. Biosci Biotechnol Biochem 78:695–700

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Ashok S, Park S (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnoll adv 31:945–961

    Article  CAS  Google Scholar 

  • Lee HK, Maddox IS (1986) Continuous production of 2, 3-butanediol from whey permeate using Klebsiella pneumoniae immobilized in calcium alginate. Enzym Microb Technol 8:409–411

    Article  CAS  Google Scholar 

  • Li Y, Wang X, Ge X, Tian P (2016) High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism. Sci Rep 6:26932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim HG, Noh MH, Jeong JH, Park S, Jung GY (2016) Optimum rebalancing of the 3-hydroxypropionic acid production pathway from glycerol in Escherichia coli. ACS Synth Biol 5(11):1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Lu T (2015) Autonomous production of 1,4-butanediol via de novo biosynthesis pathway in engineered Escherichia coli. Metab Eng 29:135–141

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Zhou D, Liu X, Nie Z, Quiroga-Sánchez DL, Chang Y (2016) Production of 3-Hydroxypropionic acid via the propionyl-coa pathway using recombinant Escherichia coli strains. PLoS One 11:e0156286

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuyama A, Yamamoto H, Kawada N, Kobayashi Y (2001) Industrial production of (R)-1,3-butanediol by new biocatalysts. J Mol Catal B Enzym 11:513–521

    Article  CAS  Google Scholar 

  • Meng Y, Xue Y, Yu B, Gao C, Ma Y (2012) Efficient production of L-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20. Bioresour Technol 116:334–339

    Article  CAS  PubMed  Google Scholar 

  • Moon SY, Hong SH, Kim TY, Lee SY (2008) Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J 40:312–320

    Article  CAS  Google Scholar 

  • Oh YH, Eom IY, Joo JC, Yu JH, Song BK, Lee SH, Hong SH, Park SJ (2015) Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean J Chem Eng 32:1945–1959

    Article  CAS  Google Scholar 

  • Park JM, Hong WK, Lee SM, Heo SY, Jung YR, Kang IY, BR O, Seo JW, Kim CH (2014) Identification and characterization of a short-chain acyl dehydrogenase from Klebsiella pneumoniae and its application for high-level production of L-2, 3-butanediol. J Ind Microbiol Biotechnol 41:1425–1433

    Article  CAS  PubMed  Google Scholar 

  • Rathnasingh C, Raj SM, Lee Y, Catherine C, Ashok S, Park S (2012) Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol 157:633–640

    Article  CAS  PubMed  Google Scholar 

  • Sabra W, Groeger C, Zeng AP (2015) Microbial cell factories for diol production. In: Bioreactor engineering research and industrial applications I. Springer, Berlin/Heidelberg, pp 165–197

    Chapter  Google Scholar 

  • Saddler JN, Ernest KC, Mes-Hartree M, Levitin N, Brownell HH (1983) Utilization of enzymatically hydrolyzed wood hemicelluloses by microorganisms for production of liquid fuels. Appl Environ Microbiol 45:153–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira MM, Berbert-Molina M, Prata AMR, Schmidell W (1998) Production of 2,3-butanediol from sucrose by Klebsiella pneumoniae NRRL B199 in batch and fed-batch reactors. Braz Arch Biol Techn 41:0–0

    Article  CAS  Google Scholar 

  • Song CW, Lee SY (2015) Combining rational metabolic engineering and flux optimization strategies for efficient production of fumaric acid. Appl Microbiol Biotechnol 99:8455–8464

    Article  CAS  PubMed  Google Scholar 

  • Song CW, Kim DI, Choi S, Jang JW, Lee SY (2013) Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol Bioeng 110:2025–2034

    Article  CAS  PubMed  Google Scholar 

  • Song CW, Kim JW, Cho IJ, Lee SY (2016) Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through β-alanine route. ACS Synth Biol 5(11):1256–1263

    Article  CAS  PubMed  Google Scholar 

  • Sun LH, Wang XD, Dai JY, Xiu ZL (2009) Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl Microbiol Biotechnol 82:847–852

    Article  CAS  PubMed  Google Scholar 

  • Syu MJ (2001) Biological production of 2, 3-butanediol. Appl Microbiol Biotechnol 55:10–18

    Article  CAS  PubMed  Google Scholar 

  • Tsvetanova F, Petrova P, Petrov K (2014) 2,3-butanediol production from starch by engineered Klebsiella pneumoniae G31-a. Appl Microbiol Biotechnol 98:2441–2451

    Article  CAS  PubMed  Google Scholar 

  • Valdehuesa KNG, Liu H, Nisola GM, Chung WJ, Lee SH, Park SJ (2013) Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical. Appl Microbiol Biotechnol 97:3309–3321

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tashiro Y, Sonomoto K (2015) Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J Biosci Bioeng 119:10–18

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Li S, Huang H, Wen J (2012) Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol Adv 30:1685–1696

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Matsuyama A, Kobayashi Y (2002) Synthesis of (R)-1,3-butanediol by enantioselective oxidation using whole recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase. Biosci Biotechnol Biochem 4:925–927

    Article  Google Scholar 

  • Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Dien SV (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  CAS  PubMed  Google Scholar 

  • Yu EKC, Levitin N, Saddler JN (1982) Production of 2, 3-butanediol by Klebsiella pneumoniae grown on acid hydrolyzed wood hemicellulose. Biotechnol Lett 4:741–746

    Article  CAS  Google Scholar 

  • Zhang X, Wang X, Shanmugam KT, Ingram LO (2011) L-malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 77:427–434

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Kumar A, Hardwidge PR, Tanaka T, Kondo A, Vadlani PV (2016) D-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum. Biotechnol Pro 32(2):271–278

    Article  CAS  Google Scholar 

  • Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003) Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries from the Ministry of Science and ICT (MSIT) through the National Research Foundation (NRF) of Korea (NRF-2015M1A2A2035810) and Mid-career Researcher Program through NRF grant funded by the MSIT (NRF-2016R1A2B4008707).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Yup Lee or Si Jae Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

David, Y., Baylon, M.G., Lee, S.Y., Park, S.J. (2017). Bioproduction of Chemicals: An Introduction. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50436-0_373

Download citation

Publish with us

Policies and ethics