Skip to main content

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Global energy demands and environmental concerns have stimulated interest in renewable, carbon-neutral diesel and jet fuel from biomass. Lignocellulosic biomass is considered as a promising resource for the future bioindustry. The plant cell wall is a polymer network comprised largely of the sugar polymers such as cellulose and hemicellulose, and the polyphenolic lignin, and considerable efforts have been made toward the conversion of lignocellulose into fermentable sugars for their use in microbial fuel synthesis. Genetically engineered microbial hosts can utilize these sugars as a carbon source to biosynthesize a broad panel of bioproducts including fatty acid-, isoprenoid-, and alcohol-derived compounds, which can be used as precursors or directly as fungible alternatives to diesel and jet fuel. In this chapter, we review the principles of biofuel synthesis from biomass-derived sugar, summarize the promising technologies of biomass deconstruction and pathway engineering, and discuss the current applications of biodiesel and biojet fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  CAS  PubMed  Google Scholar 

  • Alibhai MF, Rude MA, Schirmer AW (2016) Methods and compositions for producing olefins. US Patent No 14/068,542

    Google Scholar 

  • Alonso-Gutierrez J, Kim EM, Batth TS, Cho N, Hu Q, Chan LJ, Petzold CJ, Hillson NJ, Adams PD, Keasling JD et al (2015) Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metab Eng 28:123–133

    Article  CAS  PubMed  Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  CAS  PubMed  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  CAS  PubMed  Google Scholar 

  • Baez A, Cho KM, Liao JC (2011) High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol 90:1681–1690

    Article  CAS  PubMed  Google Scholar 

  • Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106

    Article  CAS  Google Scholar 

  • Beller HR, Lee TS, Katz L (2015) Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat Prod Rep 32:1508–1526

    Article  CAS  PubMed  Google Scholar 

  • Bentley GJ, Jiang W, Guaman LP, Xiao Y, Zhang F (2016) Engineering Escherichia coli to produce branched-chain fatty acids in high percentages. Metab Eng 38:148–158

    Article  CAS  PubMed  Google Scholar 

  • Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA et al (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108:19949–19954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan TC, Turner CD, Kromer JO, Nielsen LK (2012) Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng 109:2513–2522

    Article  CAS  PubMed  Google Scholar 

  • Cardayre SB (2013) Metathesis transformations of microbially-produced fatty acids and fatty acid derivatives. US Patent No 13/444,579

    Google Scholar 

  • Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3:415–431

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CT, Liao JC (2016) Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol Lett 363:1–13

    Google Scholar 

  • Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502:571–574

    Article  CAS  PubMed  Google Scholar 

  • Connor MR, Liao JC (2009) Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 20:307–315

    Article  CAS  PubMed  Google Scholar 

  • Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD et al (2013) Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 31:1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2:1–11

    Article  Google Scholar 

  • Deng Y, Sun M, Xu S, Zhou J (2016) Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae. J Appl Microbiol 121:187–195

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Zhu Z, Cai K, Tan X, Lu X (2011) De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation. PLoS One 6:1–7

    Google Scholar 

  • Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109:252–267

    Article  CAS  Google Scholar 

  • Felpeto-Santero C, Rojas A, Tortajada M, Galan B, Ramon D, Garcia JL (2015) Engineering alternative isobutanol production platforms. AMB Express 5:1–9

    Article  CAS  Google Scholar 

  • Fineran PC, Dy RL (2014) Gene regulation by engineered CRISPR-Cas systems. Curr Opin Microbiol 18:83–89

    Article  CAS  PubMed  Google Scholar 

  • Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381

    Article  CAS  PubMed  Google Scholar 

  • George KW, Alonso-Gutierrez J, Keasling JD, Lee TS (2015) Isoprenoid drugs, biofuels, and chemicals – artemisinin, farnesene, and beyond. Adv Biochem Eng Biotechnol 148:355–389

    CAS  PubMed  Google Scholar 

  • Goh EB, Baidoo EE, Keasling JD, Beller HR (2012) Engineering of bacterial methyl ketone synthesis for biofuels. Appl Environ Microbiol 78:70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh EB, Baidoo EE, Burd H, Lee TS, Keasling JD, Beller HR (2014) Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies. Metab Eng 26:67–76

    Article  CAS  PubMed  Google Scholar 

  • Halfmann C, Gu L, Gibbons W, Zhou R (2014) Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene. Appl Microbiol Biotechnol 98:9869–9877

    Article  CAS  PubMed  Google Scholar 

  • Harvey BG, Wright ME, Quintana RL (2010) High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuel 24:267–273

    Article  CAS  Google Scholar 

  • Harvey BG, Merriman WW, Koontz TA (2015) High-density renewable diesel and jet fuels prepared from multicyclic sesquiterpanes and a 1-hexene-derived synthetic paraffinic kerosene. Energy Fuel 29:2431–2436

    Article  CAS  Google Scholar 

  • Haushalter RW, Kim W, Chavkin TA, The L, Garber ME, Nhan M, Adams PD, Petzold CJ, Katz L, Keasling JD (2014) Production of anteiso-branched fatty acids in Escherichia coli; next generation biofuels with improved cold-flow properties. Metab Eng 26:111–118

    Article  CAS  PubMed  Google Scholar 

  • Heggset EB, Syverud K, Øyaas K (2016) Novel pretreatment pathways for dissolution of lignocellulosic biomass based on ionic liquid and low temperature alkaline treatment. Biomass Bioenergy 93:194–200

    Article  CAS  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imran M, Anwar Z, Irshad M, Asad MJ, Ashfaq H (2016) Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: a review. Adv Enzyme Res 04:44–55

    Article  CAS  Google Scholar 

  • Jonsson LJ, Martin C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  PubMed  Google Scholar 

  • Kang A, Lee TS (2015) Converting sugars to biofuels: ethanol and beyond. Bioengineering 2:184–203

    Article  PubMed  PubMed Central  Google Scholar 

  • Keshk SMAS (2016) Cellulase application in enzymatic hydrolysis of biomass. pp 185–191

    Google Scholar 

  • Kim EM, Eom JH, Um Y, Kim Y, Woo HM (2015) Microbial synthesis of myrcene by metabolically engineered Escherichia coli. J Agric Food Chem 63:4606–4612

    Article  CAS  PubMed  Google Scholar 

  • Sherif M.A.S. Keshk (2016) Cellulase application in enzymatic hydrolysis of biomass. In: New and future developments in microbial biotechnology and bioengineering, 4th edition, Elsevier, Amsterdam, pp 185–191.

    Chapter  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563

    Article  CAS  PubMed  Google Scholar 

  • Lee WH, Seo SO, Bae YH, Nan H, Jin YS, Seo JH (2012) Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng 35:1467–1475

    Article  CAS  PubMed  Google Scholar 

  • Leferink NGH, Jervis AJ, Zebec Z, Toogood HS, Hay S, Takano E, Scrutton NS (2016) A ‘plug and play’ platform for the production of diverse monoterpene hydrocarbon scaffolds in Escherichia coli. ChemistrySelect 1:1893–1896

    Article  CAS  Google Scholar 

  • Lennen RM, Pfleger BF (2012) Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 30:659–667

    Article  CAS  PubMed  Google Scholar 

  • Li S, Wen J, Jia X (2011) Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 91:577–589

    Article  CAS  PubMed  Google Scholar 

  • Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14:288–304

    Article  CAS  PubMed  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  CAS  Google Scholar 

  • Liu T, Khosla C (2010) Genetic engineering of Escherichia coli for biofuel production. Annu Rev Genet 44:53–69

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Xiao Y, Evans BS, Zhang F (2015) Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. ACS Synth Biol 4:132–140

    Article  CAS  PubMed  Google Scholar 

  • Markham KA, Alper HS (2015) Synthetic biology for specialty chemicals. Annu Rev Chem Biomol Eng 6:35–52

    Article  CAS  PubMed  Google Scholar 

  • Martin V, Pitera D, Withers S, Newman J, Keasling J (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  PubMed  Google Scholar 

  • Meylemans HA, Quintana RL, Goldsmith BR, Harvey BG (2011) Solvent-free conversion of linalool to methylcyclopentadiene dimers: a route to renewable high-density fuels. ChemSusChem 4:465–469

    Article  CAS  PubMed  Google Scholar 

  • Meylemans HA, Quintana RL, Harvey BG (2012) Efficient conversion of pure and mixed terpene feedstocks to high density fuels. Fuel 97:560–568

    Article  CAS  Google Scholar 

  • Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci 110:14592–14597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009a) Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 82:837–845

    Article  CAS  PubMed  Google Scholar 

  • Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009b) Prenyl alcohol production by expression of exogenous isopentenyl diphosphate isomerase and farnesyl diphosphate synthase genes in Escherichia coli. Biosci Biotechnol Biochem 73:186–188

    Article  CAS  PubMed  Google Scholar 

  • Ozaydin B, Burd H, Lee TS, Keasling JD (2013) Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng 15:174–183

    Article  CAS  PubMed  Google Scholar 

  • Pasquini D, Pimenta MTB, Ferreira LH, Curvelo AAdS (2005) Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol–water mixtures and carbon dioxide at high pressures. J Supercrit Fluids 36:31–39

    Google Scholar 

  • Pearlson M, Wollersheim C, Hileman J (2013) A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production. Biofuels Bioprod Biorefin 7:89–96

    Article  CAS  Google Scholar 

  • Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328

    Article  CAS  PubMed  Google Scholar 

  • Phelan RM, Sekurova ON, Keasling JD, Zotchev SB (2015) Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene. ACS Synth Biol 4:393–399

    Article  CAS  PubMed  Google Scholar 

  • Rico J, Pardo E, Orejas M (2010) Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae. Appl Environ Microbiol 76:6449–6454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rottig A, Wenning L, Broker D, Steinbuchel A (2010) Fatty acid alkyl esters: perspectives for production of alternative biofuels. Appl Microbiol Biotechnol 85:1713–1733

    Article  PubMed  Google Scholar 

  • Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    Article  CAS  PubMed  Google Scholar 

  • Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 77:1718–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salihu A, Abbas O, Sallau AB, Alam MZ (2015) Agricultural residues for cellulolytic enzyme production by Aspergillus niger: effects of pretreatment. 3 Biotech 5:1101–1106

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  CAS  PubMed  Google Scholar 

  • Saritha M, Arora A, Lata (2012) Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J Microbiol 52:122–130

    Google Scholar 

  • Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  CAS  PubMed  Google Scholar 

  • Schirmer AW, Rude MA, Brubaker SA (2014) Methods and compositions for producing fatty alcohols and fatty aldehydes. US Patents No 13/552,522

    Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  PubMed  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82

    Article  CAS  PubMed  Google Scholar 

  • Sousa LD, Jin MJ, Chundawat SPS, Bokade V, Tang XY, Azarpira A, Lu FC, Avci U, Humpula J, Uppugundla N et al (2016) Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ Sci 9:1215–1223

    Article  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    Article  CAS  PubMed  Google Scholar 

  • Su H, Jiang J, Lu Q, Zhao Z, Xie T, Zhao H, Wang M (2015) Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock. Microb Cell Factories 14:1–14

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro Y, Rodriguez GM, Atsumi S (2015) 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals. J Ind Microbiol Biotechnol 42:361–373

    Article  CAS  PubMed  Google Scholar 

  • Taylor JD, Jenni MM, Peters MW (2010) Dehydration of fermented isobutanol for the production of renewable chemicals and fuels. Top Catal 53:1224–1230

    Article  CAS  Google Scholar 

  • Teo WS, Ling H, Yu AQ, Chang MW (2015) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel. Biotechnol Biofuels 8:1–9

    Article  Google Scholar 

  • Tracy NI, Chen D, Crunkleton DW, Price GL (2009) Hydrogenated monoterpenes as diesel fuel additives. Fuel 88:2238–2240

    Article  CAS  Google Scholar 

  • Uju, Goto M, Kamiya N (2016) Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass. Bioresour Technol 214:487–495

    Google Scholar 

  • van der Oost J, Westra ER, Jackson RN, Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 12:479–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasheghani Farahani S, Kim Y-W, Schall CA (2016) A coupled low temperature oxidative and ionic liquid pretreatment of lignocellulosic biomass. Catal Today 269:2–8

    Article  CAS  Google Scholar 

  • Vasudevan PT, Briggs M (2008) Biodiesel production – current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430

    Article  CAS  PubMed  Google Scholar 

  • Vranova E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yoon SH, Shah AA, Chung YR, Kim JY, Choi ES, Keasling JD, Kim SW (2010) Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. Biotechnol Bioeng 107:421–429.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yoon SH, Jang HJ, Chung YR, Kim JY, Choi ES, Kim SW (2011) Metabolic engineering of Escherichia coli for alpha-farnesene production. Metab Eng 13:648–655

    Article  CAS  PubMed  Google Scholar 

  • Wu X, McLaren J, Madl R, Wang D (2010) Biofuels from lignocellulosic biomass: innovations beyond bioethanol. In: Sustainable biotechnology. Springer, New York, pp 19–41

    Google Scholar 

  • Xiao Y, Bowen CH, Liu D, Zhang F (2016) Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat Chem Biol 12:339–344

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M (2014) Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci U S A 111:11299–11304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Lin Y, Li L, Linhardt RJ, Yan Y (2015) Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng 29:217–226

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Nambou K, Wei L, Hua Q (2016) Heterologous production of alpha-farnesene in metabolically engineered strains of Yarrowia lipolytica. Bioresour Technol 216:1040–1048

    Article  CAS  PubMed  Google Scholar 

  • Yu AQ, Juwono NK, Foo JL, Leong SS, Chang MW (2016) Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids. Metab Eng 34:36–43

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Chang WC, Xiao Y, Liu HW, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol Bioeng 111:1396–1405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taek Soon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tian, T., Lee, T.S. (2017). Advanced Biodiesel and Biojet Fuels from Lignocellulosic Biomass. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50436-0_372

Download citation

Publish with us

Policies and ethics