Bioproduction of Fuels: An Introduction

  • Jinho Kim
  • Jens Nielsen
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Production of biofuels by microbial fermentation is well established as illustrated by large-scale production of bioethanol. Recently, there has been focus on microbial production of advanced biofuels that can be used as drop-in fuels in both gasoline, diesel and jet fuels with the objective of providing an alternative to fuels derived from petroleum. Microorganisms have therefore been engineered to enable conversion of sugars into chemicals that can be used as biofuels, such as alcohols, fatty acid esters, and alkanes. Here we review recent progress on engineering microorganisms that can serve as cell factories for production of advanced biofuels.


  1. Abraham A, Mathew AK, Sindhu R, Pandey A, Binod P (2016) Potential of rice straw for bio-refining: an overview. Bioresour Technol 215:29–36PubMedCrossRefGoogle Scholar
  2. Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66PubMedCrossRefGoogle Scholar
  3. Akhtar MK, Turner NJ, Jones PR (2013) Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci U S A 110(1):87–92PubMedCrossRefGoogle Scholar
  4. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568PubMedCrossRefGoogle Scholar
  5. Andre C, Kim SW, Yu XH, Shanklin J (2013) Fusing catalase to analkane-producing enzyme maintains enzymatic activity by converting the inhibitory by product H2O2 to the cosubstrate O2. Proc Natl Acad Sci U S A 110(8):3191–3196PubMedPubMedCentralCrossRefGoogle Scholar
  6. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohol sasbiofuels. Nature 451(7174):86–89PubMedCrossRefGoogle Scholar
  7. Bailey JE (1991) Toward a science of metabolic engineering. Science 252(5013):1668–1675PubMedCrossRefGoogle Scholar
  8. Barney BM, Wahlen BD, Garner E, Wei J, Seefeldt LC (2012) Differences in substrate specificities of five bacterial wax ester synthases. Appl Environ Microbiol 78(16):5734–5745PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC 824 Genesin Escherichiacoli for acetone production and acetate detoxification. Appl Environ Microbiol 64(3):1079–1085PubMedPubMedCentralGoogle Scholar
  10. Bhatti HN, Hanif MA, Qasim M (2008) Biodiesel production from waste tallow. Fuel 87(13):2961–2966CrossRefGoogle Scholar
  11. Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida K, Bisaria VS, Kondo A (2012) Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Appl Microbiol Biotechnol 94(3):651–658PubMedCrossRefGoogle Scholar
  12. Blombach B, Riester T, Wieschalka S, Ziert C, Youn J-W, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77(10):3300–3310PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA and others (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switch grass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108(50):19949–19954Google Scholar
  14. Buijs NA, Zhou YJ, Siewers V, Nielsen J (2015) Long-chain alkane production by they east Saccharomyces cerevisiae. Biotechnol Bioeng 112(6):1275–1279PubMedCrossRefGoogle Scholar
  15. Buschke N, Schäfer R, Becker J, Wittmann C (2013) Metabolic engineering of industrial plat form microorganisms for bio refinery applications—optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour Technol 135:544–554PubMedCrossRefGoogle Scholar
  16. Cao YX, Xiao WH, Zhang JL, Xie ZX, Ding MZ, Yuan YJ (2016) Heterologous biosynthesis and manipulation of alkanes in Escherichia coli. Metab Eng 38:19–28PubMedCrossRefGoogle Scholar
  17. Carlquist M, Gibson B, Karagul Yuceer Y, Paraskevopoulou A, Sandell M, Angelov AI, Gotcheva V, Angelov AD, Etschmann M, de Billerbeck G M and others (2015) Process engineering for bioflavour production with metabolically active yeasts – amini – review. Yeast 32(1):123–143Google Scholar
  18. Caspeta L, Nielsen J (2013) Economic and environmental impacts of microbial biodiesel. Nat Biotechnol 31:789–793PubMedCrossRefGoogle Scholar
  19. Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502(7472):571–574PubMedCrossRefGoogle Scholar
  20. Choi YJ, Lee J, Jang YS, Lee SY (2014) Metabolic engineering of microorganisms for the production of higher alcohols. MBio 5(5):e01524–e01514PubMedPubMedCentralCrossRefGoogle Scholar
  21. Clomburg JM, Gonzalez R (2011) Metabolic engineering of Escherichia coli for the production of 1, 2-propanediol from glycerol. Biotechnol Bioeng 108:867–879PubMedCrossRefGoogle Scholar
  22. De Domenico S, Strafella L, D’Amico L, Mastrorilli M, Ficarella A, Carlucci P, Santino A (2016) Biodiesel production from Cynara cardunculus L. and Brassica carinata A. Braun seeds and their suitability as fuels in compression ignition engines. Ital J Agron 11(1):47–56CrossRefGoogle Scholar
  23. de Jong BW, Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J (2015) Metabolic pathway engineering for fatty acid ethylester production in Saccharomyces cerevisiae using stable chromosomal integration. J Ind Microbiol Biotechnol 42(3):477–486PubMedCrossRefGoogle Scholar
  24. de Vos WM, Hugenholtz J (2004) Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol 22(2):72–79PubMedCrossRefGoogle Scholar
  25. Dekishima Y, Lan EI, Shen CR, Cho KM, Liao JC (2011) Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J Am Chem Soc 133(30):11399–11401PubMedCrossRefGoogle Scholar
  26. Demirbas A (2008) Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers Manag 49(1):125–130CrossRefGoogle Scholar
  27. Diniz RH, Rodrigues MQ, Fietto LG, Passos FM, Silveira WB (2014) Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3. Biocatal Agric Biotechnol 3(2):111–117Google Scholar
  28. Duan Y, Zhu Z, Cai K, Tan X, Lu X (2011) De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation. PLoS ONE 6(5):e20265PubMedPubMedCentralCrossRefGoogle Scholar
  29. Eryilmaz T, Yesilyurt MK, Cesur C, Gokdogan O (2016) Biodiesel production potential from oil seeds in Turkey. Renew Sust Energ Rev 58:842–851CrossRefGoogle Scholar
  30. Eser BE, Das D, Han J, Jones PR, Marsh EN (2011) Oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehydedecarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry 50(49):10743–10750PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18(3):220–227PubMedCrossRefGoogle Scholar
  32. Feofilova EP, Sergeeva IE, Ivashechkin AA (2010) Biodiesel-fuel: content, production, producers, contemporary biotechnology (review). Appl Biochem Microbiol 46(4):405–415CrossRefGoogle Scholar
  33. Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10(6):295–304PubMedCrossRefGoogle Scholar
  34. Fletcher E, Krivoruchko A, Nielsen J (2016) Industrial systems biology and its impact on synthetic biology of yeast cell factories. Biotechnol Bioeng 113(6):1164–1170PubMedCrossRefGoogle Scholar
  35. Fu WJ, Chi Z, Ma ZC, Zhou HX, Liu GL, Lee CF, Chi ZM (2015) Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl Microbiol Biotechnol 99:7481–7494PubMedCrossRefGoogle Scholar
  36. González-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1, 3-propanediol from glycerol. Metab Eng 7(5):329–336PubMedCrossRefGoogle Scholar
  37. Hahn-Hägerdal B, Wahlbom CF, Gárdonyi M, van Zyl WH, Cordero Otero RR, Jönsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84PubMedGoogle Scholar
  38. Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai YL, Mo B, Zong D, Smith MD and others. (2013) Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol 2(1):59–62Google Scholar
  39. Hirasawa T, Shimizu H (2016) Recent advances in amino acid production by microbial cells. Curr Opin Biotechnol 42:133–146PubMedCrossRefGoogle Scholar
  40. Jin Z, Wong A, Foo JL, Ng J, Cao YX, Chang MW, Yuan YJ (2016) Engineering Saccharomyces cerevisiae to produce odd chain-length fatty alcohols. Biotechnol Bioeng 113(4):842–851PubMedCrossRefGoogle Scholar
  41. Johnson ET, Schmidt-Dannert C (2008) Light-energy conversion in engineered microorganisms. Trends Biotechnol 26(12):682–689PubMedCrossRefGoogle Scholar
  42. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484PubMedPubMedCentralGoogle Scholar
  43. Jung JY, Lee JW (2011) Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae. J Microbiol Biotechnol 21:846–853PubMedCrossRefGoogle Scholar
  44. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330(6009):1355–1358PubMedCrossRefGoogle Scholar
  45. Kim J, Park W (2014) Oxidative stress response in Pseudomonas putida. Appl Microbiol Biotechnol 98(16):6933–6946PubMedCrossRefGoogle Scholar
  46. Kim S-J, Seo S-O, Jin Y-S, Seo J-H (2013) Production of 2, 3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol 146:274–281PubMedCrossRefGoogle Scholar
  47. Kleerebezem M, Hugenholtz J (2003) Metabolic pathway engineering in lactic acid bacteria. Curr Opin Biotechnol 14(2):232–237PubMedCrossRefGoogle Scholar
  48. Kunjapur AM, Prather KL (2015) Microbial engineering for aldehyde synthesis. Appl Environ Microbiol 81(6):1892–1901PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kurnia JC, Jangam SV, Akhtar S, Sasmito AP, Mujumdar AS (2016) Advances in biofuel production from oil palm and palm oil processing wastes: a review. Biofuel Res J 3(1):332–346CrossRefGoogle Scholar
  50. Ladygina N, Dedyukhina E, Vainshtein M (2006) A review won microbial synthesis of hydrocarbons. Process Biochem 41(5):1001–1014CrossRefGoogle Scholar
  51. Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13(4):353–363PubMedCrossRefGoogle Scholar
  52. Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanolincyano bacteria. Proc Natl Acad Sci U S A 109(16):6018–6023PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nat Biotechnol 33(10):1061–1072PubMedCrossRefGoogle Scholar
  54. Lee SJ, Lee DW (2013) Design and development of synthetic microbial platform cells for bioenergy. Front Microbiol 4:92PubMedPubMedCentralGoogle Scholar
  55. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101(2):209–228PubMedCrossRefGoogle Scholar
  56. Lennen RM, Pfleger BF (2013) Microbial production of fatty acid-derived fuels and chemicals. Curr Opin Biotechnol 24(6):1044–1053PubMedCrossRefGoogle Scholar
  57. Li Q, Cai H, Hao B, Zhang C, Yu Z, Zhou S, Chenjuan L (2010) Enhancing clostridial acetone-butanol-ethanol (ABE) production and improving fuel properties of ABE-enriched biodiesel by extractive fermentation with biodiesel. Appl Biochem Biotechnol 162(8):2381–2386PubMedCrossRefGoogle Scholar
  58. Li S, Wen J, Jia X (2011) Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway over expression. Appl Microbiol Biotechnol 91(3):577–589PubMedCrossRefGoogle Scholar
  59. Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (2012) Integrated electro microbial conversion of CO2 to higher alcohols. Science 335(6076):1596PubMedCrossRefGoogle Scholar
  60. Li L, Li K, Wang Y, Chen C, Xu Y, Zhang L, Han B, Gao C, Tao F, Ma C (2015) Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R, 3R)-2, 3-butanediol from lignocellulose-derived sugars. Metab Eng 28:19–27PubMedCrossRefGoogle Scholar
  61. Liu J-F, Nie K-L, Fan L-H, Wang F, Tan T-W, Deng L (2013a) Increased production of FAEEs for biodiesel with lipase enhanced Saccharomyces cerevisiae. Proc Biochem 48(8):1212–1215CrossRefGoogle Scholar
  62. Liu L, Liu Y, Shin HD, Chen RR, Wang NS, Li J, Du G, Chen J (2013a) Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl Microbiol Biotechnol 97(14):6113–6127PubMedCrossRefGoogle Scholar
  63. Liu L, Redden H, Alper HS (2013b) Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces. Curr Opin Biotechnol 24(6):1023–1030PubMedCrossRefGoogle Scholar
  64. Liu J-z, Xu W, Chistoserdov A, Bajpai RK (2016) Glycerol dehydratases: biochemical structures, catalytic mechanisms, and industrial applicationsin 1, 3-propanediol production by naturally occurring and genetically engineered bacterial strains. Appl Biochemist Biotechnol 179:1073–1100.Google Scholar
  65. Loeschcke A, Thies S (2015) Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 99(15):6197–6214PubMedPubMedCentralCrossRefGoogle Scholar
  66. Love G, Gough S, Brady D, Barron N, Nigam P, Singh D, Marchant R, McHale A (1998) Continuous ethanol fermentation at 45 C using Kluyveromyces marxianus IMB3 immobilized in calcium alginate and kissiris. Bio Proc Eng 18(3):187–189Google Scholar
  67. Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, Dahl RH, Tai A, Mahatdejkul-Meadows T, Xu L, Zhao L, Dasika MS, Murarka A, Lenihan J, Eng D, Leng JS, Liu CL, Wenger JW, Jiang H, Chao L, Westfall P, Lai J, Ganesan S, Jackson P, Mans R, Platt D, Reeves CD, Saija PR, Wichmann G, Holmes VF, Benjamin K, Hill PW, Gardner TS, Tsong AE (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694–697PubMedCrossRefGoogle Scholar
  68. Neves AR, Pool WA, Kok J, Kuipers OP, Santos H (2005) Overview on sugar metabolism and its control in Lactococcus lactis – the input from in vivo NMR. FEMS Microbiol Rev 29(3):531–554PubMedGoogle Scholar
  69. Nguyen AQ, Schneider J, Wendisch VF (2015) Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. J Biotechnol 201:75–85PubMedCrossRefGoogle Scholar
  70. Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55(3):263–283PubMedCrossRefGoogle Scholar
  71. Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164(6):1185–1197PubMedCrossRefGoogle Scholar
  72. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68CrossRefGoogle Scholar
  73. Nikel PI, Chavarría M, Danchin A, de Lorenzo V (2016) From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 34:20–29PubMedCrossRefGoogle Scholar
  74. Ohta K, Beall D, Mejia J, Shanmugam K, Ingram L (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900PubMedPubMedCentralGoogle Scholar
  75. Pietrzak W, Kawa-Rygielska J, Król B, Lennartsson PR, Taherzadeh MJ (2016) Ethanol, feed components and fungal biomass production from field bean (Vicia faba var. equina) seeds in an integrated process. Bioresour Technol 216:69–76PubMedCrossRefGoogle Scholar
  76. Poblete-Castro I, Becker J, Dohnt K, dos Santos VM, Wittmann C (2012) Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 93(6):2279–2290PubMedCrossRefGoogle Scholar
  77. Portnoy VA, Scott DA, Lewis NE, Tarasova Y, Osterman AL, Palsson B (2010) Deletion of genes encoding cytochrome oxidases and quinol monooxygenase blocks the aerobic-anaerobic shifting Escherichiacoli K-12 MG1655. Appl Environ Microbiol 76(19):6529–6540PubMedPubMedCentralCrossRefGoogle Scholar
  78. Qiu Y, Zhang J, Li L, Wen Z, Nomura CT, Wu S, Chen S (2016) Engineering Bacillus licheniformis for the production of meso-2, 3-butanediol. Biotechnol Biofuels 9(1):1CrossRefGoogle Scholar
  79. Ramos JL, SolCuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, Udaondo Z, Roca A (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39(4):555–566PubMedCrossRefGoogle Scholar
  80. Rodriguez GM, Atsumi S (2014) Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng 25:227–237PubMedPubMedCentralCrossRefGoogle Scholar
  81. Romero S, Merino E, Bolívar F, Gosset G, Martinez A (2007) Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl Environ Microbiol 73(16):5190–5198PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 77(5):1718–1727PubMedPubMedCentralCrossRefGoogle Scholar
  83. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562PubMedCrossRefGoogle Scholar
  84. Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10(6):312–320PubMedCrossRefGoogle Scholar
  85. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titeranaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77(9):2905–2915PubMedPubMedCentralCrossRefGoogle Scholar
  86. Singh V, Chaudhary DK, Mani I, Dhar PK (2016) Recent advances and challenges of the use of cyanobacteria towards the production of biofuels. Renew Sust Energ Rev 60:1–10CrossRefGoogle Scholar
  87. Smith KM, Cho K-M, Liao JC (2010) Engineering Corynebacterium glutamicum for is obutanol production. Appl Microbiol Biotechnol 87(3):1045–1055PubMedPubMedCentralCrossRefGoogle Scholar
  88. Srirangan K, Pyne ME, Perry Chou C (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102(18):8589–8604PubMedCrossRefGoogle Scholar
  89. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559–562PubMedCrossRefGoogle Scholar
  90. Stephenson A, Dennis J, Scott S (2008) Improving the sustainability of the production of biodiesel from oil seed rapein the UK. Process Saf Environ Prot 86(6):427–440CrossRefGoogle Scholar
  91. Tai YS, Xiong M, Jambunathan P, Wang J, Wang J, Stapleton C, Zhang K (2016) Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat Chem Biol 12(4):247–253PubMedCrossRefGoogle Scholar
  92. Tang X, Tan Y, Zhu H, Zhao K, Sehn W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75:1628–1634PubMedPubMedCentralCrossRefGoogle Scholar
  93. Teo WS, Ling H, Yu A-Q, Chang MW (2015) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short-and branched-chain alkyl esters biodiesel. Biotechnol Biofuels 8(1):1CrossRefGoogle Scholar
  94. Tippmann S, Chen Y, Siewers V, Nielsen J (2013) From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae. Biotechnol J 8:1435–1444PubMedCrossRefGoogle Scholar
  95. Tippmann S, Scalcinti G, Siewers V, Nielsen J (2015) Production of farnesene and santalane by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed. Biotechnol Bioeng 113:72–81PubMedCrossRefGoogle Scholar
  96. Trinh CT, Unrean P, Srienc F (2008) Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol 74(12):3634–3643PubMedPubMedCentralCrossRefGoogle Scholar
  97. Uaka S (1960) Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79:754–755Google Scholar
  98. Ui S, Okajima Y, Mimura A, Kanai H, Kudo T (1997) Molecular generation of an Escherichia colis train producing only the meso-isomer of 2, 3-butanediol. J Ferment Bio Eng 84(3):185–189CrossRefGoogle Scholar
  99. Wackett LP (2008) Microbial-based motor fuels: science and technology. Microbial Biotechnol 1(3):211–225CrossRefGoogle Scholar
  100. Wackett LP (2011) Engineering microbes to produce biofuels. Curr Opin Biotechnol 22(3):388–393PubMedCrossRefGoogle Scholar
  101. Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka (e) nes. Biotechnol Biofuels 6(1):1CrossRefGoogle Scholar
  102. Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A and others (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109(3):E111–E118Google Scholar
  103. Xu L, Wang S-K, Wang F, Guo C, Liu C-Z (2014) Improved biomass and Hydrocarbon productivity of Botryococcus braunii by periodic ultrasound stimulation. Bio Energy Res 7(3):986–992Google Scholar
  104. Xue J, Ahring BK (2011) Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol 77(7):2399–2405PubMedPubMedCentralCrossRefGoogle Scholar
  105. Yomano L, York S, Shanmugam K, Ingram L (2009) Deletion of methyl glyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnol Lett 31(9):1389–1398PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22(6):775–783PubMedCrossRefGoogle Scholar
  107. Zhou S, Iverson AG, Grayburn WS (2008) Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol Lett 30:335–342PubMedCrossRefGoogle Scholar
  108. Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J (2016a) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zhou YJ, Buijs NA, Zhu Z, Gómez DO, Boonsombuti A, Siewers V, Nielsen J (2016b) Harnessing yeast peroxisomes for biosynthesis of fatty acid-derived biofuels and chemicals with relieved side-pathway competition. J Am Chem Soc. Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
  2. 2.SE-Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs LyngbyDenmark
  3. 3.Science for Life LaboratoryRoyal Institute of TechnologySolnaSweden

Personalised recommendations