Skip to main content

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 1167 Accesses

Abstract

Biosurfactant-mediated oil recovery has the potential to recover large amounts of crude oil that remain entrapped in oil reservoirs after current oil recovery technologies reach their economic limit. Lipopeptides (surfactins and lichenysins), rhamnolipids, and other glycolipids generate the low interfacial tensions and the appropriate rock wettabilities needed to mobilize entrapped oil. Biosurfactants are active over a wide range of temperatures, pH values, and salinities found in many oil reservoirs and are effective at low concentrations. A number of laboratory experiments show that biosurfactant-mediated oil recovery is effective in recovering large amounts of entrapped oil. Several field trials show that in situ biosurfactant production is possible and recovers additional oil. Biosurfactant-mediated oil recovery has been difficult to scale-up to a reservoir-wide technology due to the lack of understanding of how best to stimulate biosurfactant production in the reservoir. In addition, the relationship between biosurfactant concentration and oil recovery is still unclear. Ex-situ biosurfactant-mediated oil recovery where the biosurfactant is added to the injection fluids has not been implemented on a large scale, most likely due to the high production costs of biosurfactants. Multidisciplinary approaches are needed to move biosurfactant-mediated oil recovery from the laboratory to the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Sulaimani H, Al-Wahaibi Y, Al-Bahry S, Elshafie A, Al-Bemani A, Joshi S, Ayatollahi S (2012) Residual-oil recovery through injection of biosurfactant chemical surfactant, and mixtures of both under reservoir temperatures: induced-wettability and interfacial-tension effects. SPE Reserv Eval Eng 15:210–217

    Article  Google Scholar 

  • Alvarado V, Manrique E (2010) Enhanced oil recovery: an update review. Energies 3:1529–1575

    Article  Google Scholar 

  • Al-Wahaibi Y, Joshi S, Al-Bahry S, Elshafie A, Al-Bemani A, Shibulal B (2014) Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids Surf B: Biointerfaces 114:324–333

    Article  CAS  PubMed  Google Scholar 

  • Amani H, Müller MM, Syldatk C, Hausmann R (2013) Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Appl Biochem Biotechnol 170:1080–1093

    Article  CAS  PubMed  Google Scholar 

  • Armstrong RT, Wildenschild D (2012a) Microbial enhanced oil recovery in fractional-wet systems: a pore-scale investigation. Transp Porous Media 92:819–835

    Article  CAS  Google Scholar 

  • Armstrong RT, Wildenschild D (2012b) Investigating the pore-scale mechanisms of microbial enhanced oil recovery. J Pet Sci Eng 94–95:155–164

    Article  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants' production. Front Microbiol 5:697. doi:10.3389/fmicb.2014.00697

    Article  PubMed  PubMed Central  Google Scholar 

  • Chai L, Zhang F, She Y, Banat IM, Hou D (2015) Impact of a microbial-enhanced oil recovery field trial on microbial communities in a low-temperature heavy oil reservoir. Nat Environ Pollut Technol 14:455–462

    CAS  Google Scholar 

  • Chen HL, Chen YS, Juang RS (2008) Recovery of surfactin from fermentation broths by a hybrid salting-out and membrane filtration process. Sep Purif Technol 59:244–252

    Article  CAS  Google Scholar 

  • Chitoui O, Dimitrov K, Gancel F, Dhulster P, Nikov I (2012) Rotating discs bioreactor, a new tool for lipopeptides production. Process Biochem 47:2020–2024

    Article  Google Scholar 

  • Coutte F, Lecouturier D, Yahia LV, Béchet M, Jacques P, Dhulster P (2010) Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl Microbiol Biotechnol 87:499–507

    Article  CAS  PubMed  Google Scholar 

  • Daniel HJ, Reuss M, Syldatk C (1998) Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol Lett 20:1153–1156

    Article  CAS  Google Scholar 

  • Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011) Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf B: Biointerfaces 84:292–300

    Article  CAS  PubMed  Google Scholar 

  • de Cássia FSSR, Darne G, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15:12523–12542

    Article  Google Scholar 

  • Doman LE (2016) International energy outlook 2016, DOE/EIA-0484. U. S. Energy Information Administration, Washington, DC

    Google Scholar 

  • Elshafie AE, Joshi SJ, Al-Wahaibi YM, Al-Bemani AS, Al-Bahry SN, Al-Maqbali D, Banat IM (2015) Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front Microbiol 6(1324). doi:10.3389/fmicb.2015.01324

    Google Scholar 

  • Fernandes PL, Rodriques EM, Paiva FR, Ayupe BAL, McInerney MJ, Tótola MR (2016) Biosurfactant, solvents, and polymer production by Bacillus subtilis RI4914 and their applications for enhanced oil recovery. Fuel 180:551–567

    Article  CAS  Google Scholar 

  • Geys R, Soetaert W, Van Bogaert I (2014) Biotechnological opportunities in biosurfactant production. Curr Opin Biotechnol 30:66–72

    Article  CAS  PubMed  Google Scholar 

  • Giani C, Meiwes J, Rothert R, Wullbrandt D (1996) Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-rhamnose.US Patent 5, 501, 966

    Google Scholar 

  • Gray M, Yeung A, Foght J, Yarranton, HW (2008) Potential microbial enhanced oil recovery processes: a critical analysis. In: Proceeding of the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA. SPE-114676-MS.

    Google Scholar 

  • Hall C, Tharakan P, Hallock J, Cleveland C, Jefferson M (2003) Hydrocarbons and the evolution of human culture. Nature 426:318–322

    Article  CAS  PubMed  Google Scholar 

  • Harner NK, Richardson TL, Thompson KA, Best RJ, Best AS, Trevors JT (2011) Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery. J Ind Microbiol Biotechnol 38:1761–1775

    Article  CAS  PubMed  Google Scholar 

  • Helmy Q, Kardena E, Funamizu N, Wisjnuprapto (2011) Strategies toward commercial scale of biosurfactant production as potential substitute for its chemically counterparts. Int J Biometeorol 12:66–86

    Google Scholar 

  • Huang L, Yu L, Luo Z, Song S, Bo H, Zheng C (2014) A microbial-enhanced oil recovery trial in Huabei Oilfield in China. Pet Sci Technol 32:584–592

    Article  CAS  Google Scholar 

  • Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour Technol 99:195–199

    Article  CAS  PubMed  Google Scholar 

  • Joshi SJ, Geetha SJ, Desai AJ (2015) Characterization and application of biosurfactant produced by Bacillus licheniformis R2. Appl Biochem Biotechnol 177:346–361

    Article  CAS  PubMed  Google Scholar 

  • Kryachko Y, Semler D, Vogrinetz J, Lemke M, Links MG, McCarthy EL, Haung B, Hemmingsen SM (2016) Enrichment and identification of biosurfactant-producing oil field microbiota utilizing electron acceptors other than oxygen and nitrate. J Biotechnol 231:9–15

    Article  CAS  PubMed  Google Scholar 

  • Le JJ, XL W, Wang R, Zhang JY, Bai LL, Hou ZW (2015) Progress in pilot testing of microbial-enhanced oil recovery in the Daqing oilfield of north China. Int Biodeterior Biodegrad 97:188–194

    Article  CAS  Google Scholar 

  • Li Q, Kang C, Wang H, Liu C, Zhang C (2002) Application of microbial enhanced oil recovery technique to Daqing Oilfield. Biochem Eng J 11:197–199

    Article  CAS  Google Scholar 

  • Li G, Gao P, Wu Y, Tian H, Dai X, Wang Y, Cui Q, Zhang H, Pan X, Dong H, Ma T (2014) Microbial abundance and community composition influence production performance in a low-temperature petroleum reservoir. Environ Sci Technol 48:5336–5344

    Article  CAS  PubMed  Google Scholar 

  • Li CF, Li Y, Li XM, Cao YB, Song YT (2015) The application of microbial enhanced oil recovery technology in Shengli Oilfield. Petrol Sci Technol 33:556–560

    Article  Google Scholar 

  • Lin SC, Minton MA, Sharma MM, Georgiou G (1994) Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl Environ Microbiol 60:31–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Lijun M, Mu B, Liu R, Ni F, Zhou J (2005) The field pilot of microbial enhanced oil recovery in a high temperature petroleum reservoir. J Pet Sci Eng 48:265–271

    Article  CAS  Google Scholar 

  • Liu JH, Chen YT, Li H, Jia YP, Xu RD, Wang J (2015) Optimization of fermentation conditions for biosurfactant production by Bacillus subtilis strains CTCC M201163 from oilfield wastewater. Environ Prog Sust Energy 34:548–554

    Article  CAS  Google Scholar 

  • Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  • McInerney MJ, Youssef N, Nagle DP (2009) Lipopeptide biosurfactants and their use in oil recovery. In: Ashby R, Solaiman D, Kitamoto D (eds) Bio–based surfactants and detergents: synthesis, properties, and applications. American Oil Chemists Society, Urbana, pp 129–153

    Google Scholar 

  • Nazina TN, Griror’yan AA, Feng Q, Shestakova NM, Babich TL, Pavlova NK, Ivoilov VS, Ni F, Wang J, She Y, Xiang T, Mei B, Luo Z, Belyaev SS, Ivanov MV (2007) Microbiological and production characteristics of the high-temperature Kongdian petroleum reservoir revealed during field trial of biotechnology for the enhancement of oil recovery. Microbiology 76:297–309

    Article  CAS  Google Scholar 

  • Nazina TN, Pavlova NK, Ni F, Shestakova NM, Ivoilov VS, Feng Q, Dongyun Z, Prusakova TS, Belyaev SS, Ivanov MV (2008) Regulation of geochemical activity of microorganisms in a petroleum reservoir buy injection of H2O2 or water-air mixture. Microbiology 77:324–333

    Article  CAS  Google Scholar 

  • Nikolov V, Farag I, Nikov I (2000) Gas-liquid mass transfer in bioreactor with TPIFB. Bioprocess Eng 23:427–429

    Article  CAS  Google Scholar 

  • Patel J, Borgohain S, Kumar M, Rangarajan V, Somasundaran P, Sen R (2015) Recent developments in microbial enhanced oil recovery. Renew Sust Energ Rev 52:1539–1558

    Article  CAS  Google Scholar 

  • Pruthi V, Cameotra SS (2000) Novel sucrose lipid produced by Serratia marcescens and its application in enhanced oil recovery. J Surf Deter 3:533–537

    Article  Google Scholar 

  • Rabiei A, Sharifinik M, Niazi A, Hashemi A, Ayatollahi S (2013) Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir. Appl Microbiol Biotechnol 97:5979–5991

    Article  CAS  PubMed  Google Scholar 

  • Salehizadeh H, Mohammadizad S (2009) Microbial enhanced oil recovery using biosurfactant produced by Alcaligenes faecalis. Iran J Biotechnol 7:216–223

    CAS  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st Century. Int J Mol Sci 17:401. doi:10.3390/ijms17030401

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarafzadeh P, Hezave AZ, Ravanbakhsh M, Niazi A, Ayatollahi S (2013) Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration mechanisms for oil recovery during MEOR process. Colloids Surf B: Biointerfaces 105:223–229

    Article  CAS  PubMed  Google Scholar 

  • Sen R (ed) (2010) Biosurfactants. Landes Bioscience and Springer Science+Business Media, New York

    Google Scholar 

  • Shavandi M, Mohebali G, Haddadi A, Shakarami H, Nuhi A (2011) Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6. Colloids Surf B: Biointerfaces 82:477–482

    Article  CAS  PubMed  Google Scholar 

  • Sheng J (2010) Modern chemical enhanced oil recovery: theory and practice. Gulf Professional Publishing, Burlington

    Google Scholar 

  • Shibulal B, Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ (2014) Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review. The Scientific World J. doi:10.1155/2014/309159

    Google Scholar 

  • Siegert M, Sitte J, Galushko A, Krüger M (2014) Starting up microbial enhanced oil recovery. Adv Biochem Eng Biotechnol 142:1–94

    PubMed  Google Scholar 

  • Simpson DR, Natraj N, McInerney MJ, Duncan KE (2011) Biosurfactant-producing Bacillus spp. are present in produced brines from Oklahoma oil reservoirs with a wide range of salinities. Appl Microbiol Biotechnol 91:1083–1093

    Article  CAS  PubMed  Google Scholar 

  • Xia WJ, Luo ZB, Dong HP, Yu L, Cui QF, Bi YQ (2012) Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous Pseudomonas aeruginosa WJ-1 using waste vegetable oils. Appl Biochem Biotechnol 166:1148–1166

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Abraham WR, Meyer H, Giuliano L, Golyshin PN (1999) Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry. Biochim Biophys Acta 1438:273–280

    Article  CAS  PubMed  Google Scholar 

  • Youssef N, Nguyen T, Sabatini DA, McInerney MJ (2007a) Basis for formulating biosurfactant mixtures to achieve ultra low interfacial tension values against hydrocarbons. J Ind Microbiol Biotechnol 34:497–507

    Article  CAS  PubMed  Google Scholar 

  • Youssef N, Simpson DR, Duncan KE, McInerney MJ, Folmsbee M, Fincher T, Knapp RM (2007b) In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol 73:1239–1247

    Article  CAS  PubMed  Google Scholar 

  • Youssef N, Elshahed MS, McInerney MJ (2009) Microbial processes in oil fields: culprits, problems, and opportunities. Adv Appl Microbiol 66:141–251

    Article  CAS  PubMed  Google Scholar 

  • Youssef N, Simpson DR, McInerney MJ, Duncan KE (2013) In-situ lipopeptide biosurfactant production by Bacillus strains correlates with improved oil recovery in two oil wells approaching their economic limit of production. Int Biodeterior Biodegrad 81:127–132

    Article  CAS  Google Scholar 

  • Zheng C, Yu L, Huang L, Xiu J, Huang Z (2012) Investigation of a hydrocarbon-degrading strain, Rhodococcusruber Z25, for the potential of microbial enhanced oil recovery. J Petrol. Sci Eng 81:49–56

    CAS  Google Scholar 

  • Zhu Z, Zhang F, Wei Z, Ran W, Shen Q (2013) The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation. J Environ Manag 127:96–102

    Article  CAS  Google Scholar 

  • Zou C, Wang M, Xing Y, Lan G, Ge T, Yan X, Gu T (2014) Characterization and optimization of biosurfactants produced by Acinetobacter baylyi ZJ2 isolated from crude oil-contaminated soil sample toward microbial enhanced oil recovery applications. Biochem Eng J 90:49–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MJM was supported by contract DE-FG02-96ER20214 from Physical Biosciences Division, Office of Science, U. S. Department of Energy. GL was supported by a scholarship from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. McInerney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, G., McInerney, M.J. (2017). Use of Biosurfactants in Oil Recovery. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50436-0_364

Download citation

Publish with us

Policies and ethics