Skip to main content

Lipid-Containing Secondary Metabolites from Algae

  • Reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

As secondary metabolites, algal lipids are composed of fats, phospholipids, steroids, and waxes, which are functionally important for cell structure and energy storage. On average, lipids account for 20–40% of algal dry weight with a maximum of 85% in some algae, which exceeds the lipid content of most terrestrial plants. The range of potential applications of algal oils is very wide. Polyunsaturated fatty acids in algae could be an importance source for human and animal nutrition and biofuels. However, a viable commercial production of fatty acid needs further selection and screening of oleaginous species, improvement of strains by genetic manipulation, optimization of culture conditions, and development of efficient cultivation systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahlgren G, Gustafsson IB, Boberg M (1992) Fatty-acid content and chemical-composition of fresh-water microalgae. J Phycol 28:37–50

    Article  CAS  Google Scholar 

  • Alonso DL, Belarbi EH, Fernandez-Sevilla JM, Rodriguez-Ruiz J, Grima EM (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461–471

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee U (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  PubMed  Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, Oxford, pp 312–351

    Google Scholar 

  • Belarbi E-H, Molina GE, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzym Microb Tech 26:516–529

    Article  CAS  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1988) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, New York, pp 200–234

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988) Micro-algal biotechnology. Cambridge University Press, New York

    Google Scholar 

  • Chapman VJ, Chapman DJ (1980) Seaweeds and their uses. London: Chapman & Hall.

    Book  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • De Swaaf M, de Rijk T, Eggink G, Sijtsma L (1999) Optimisation of docosahexaenoic acid production in batch cultivation by Crypthecodinium cohnii. J Biotechnol 70:185–192

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rozentsvet OA (1989) Diacylglyceryl-trimethylhomoserines and phospholipids of some green marine macrophytes. Phytochemistry 28:3341–3343

    Article  Google Scholar 

  • Dembitsky VM, Rozentsvet OA (1990) Phospholipid-composition of some marine red algae. Phytochemistry 29:3149–3152

    Article  Google Scholar 

  • Dijkstra A (2006) Revisiting the formation of trans isomers during partial hydrogenation of triacylglycerol oils. Eur J Lipid Sci Tech 108:249–264

    Article  CAS  Google Scholar 

  • Gladu PK, Patterson GW, Wikfors GH, Smith BC (1995) Sterol, fatty-acid, and pigment characteristics of utex-2341, a marine eustigmatophyte identified previously as Chlorella minutissima (Chlorophyceae). J Phycol 31:774–777

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ, Thompson PA, Calderwood GS (1990) Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J Appl Phycol 2:45–56

    Article  Google Scholar 

  • Henderson RJ, Sargent JR (1989) Lipid composition and biosynthesis in ageing cultures of the marine cryptomonad, Chroomonas salina. Phytochemistry 28:1355–1361

    Article  CAS  Google Scholar 

  • Iida I, Nakahara T, Yokochi T, Kamisaka Y, Yagi H, Yamaoka M, Suzuki O (1996) Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. J Ferment Bioeng 81:76–78

    Article  CAS  Google Scholar 

  • Janssen M, Kuijpers TC, Veldhoen B, Ternbach MB, Tramper J, Mur LR, Wijffels RH (1999) Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light dark cycles: 13–87 s. J Biotechnol 70:323–333

    Article  CAS  Google Scholar 

  • Jiang H, Gao K (2004) Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 40:651–654

    Article  CAS  Google Scholar 

  • Jiang Y, Fan KW, Wong RDY, Chen F (2004) Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J Agr Food Chem 52:1196–1200

    Article  CAS  Google Scholar 

  • Jones AL, Harwood JL (1992) Lipid-composition of the brown-algae Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry 31:3397–3403

    Article  CAS  Google Scholar 

  • Khotimchenko SV, Titlyanova TV (1996) Distribution of an amino acid-containing phospholipid in brown algae. Phytochemistry 41:1535–1537

    Article  CAS  Google Scholar 

  • Kitano M, Matsukawa R, Karube I (1997) Changes in eicosapentaenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions. J Appl Phycol 9:559–563

    CAS  Google Scholar 

  • Kulkarni M, Dalai A (2006) Waste cooking oil–an economical source for biodiesel: a review. Ind Eng Chem Res 45:2901–2913

    Article  CAS  Google Scholar 

  • Lewis T, Nichols P, McMeekin T (1999) The biotechnological potential of thraustochytrids. Mar Biotechnol 1:580–587

    Article  CAS  PubMed  Google Scholar 

  • Lombardi AT, Wangersky PJ (1991) Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Mar Ecol Prog Ser 77:39–47

    Article  CAS  Google Scholar 

  • Meireles L, Guedes A, Malcata F (2003) Lipid class composition of the microalga Pavlova lutheri: eicosapentaenoic and docosahexaenoic acids. J Agr Food Chem 51:2237–2241

    Article  CAS  Google Scholar 

  • Metting F (1996) Biodiversity and application of microalgae. J Ind Microbiol 17:477–489

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biot 66:486–496

    Article  CAS  Google Scholar 

  • Nakahara T, Yokochi T, Higashihara T, Tanaka S, Yaguchi T, Honda D (1996) Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp. isolated from Yap islands. J Am Oil Chem Soc 73:1421–1426

    Article  CAS  Google Scholar 

  • Nichols PD, Jones GJ, De Leeuw JW, Jones RB (1984) The fatty acid and sterol composition of two marine dinoflagellates. Phytochemistry 23:1043–1047

    Article  CAS  Google Scholar 

  • Ono K, Miyatake K, Inui H, Kitaoka S, Nakano Y (1995) Wax ester production by anaerobic Euglena gracilis. J Mar Biotechnol 2:157–161

    CAS  Google Scholar 

  • Patterson GW, Tsitsa-Tzardis E, Wikfors GH, Gladu PK, Chitwood DJ, Harrison D (1993) Sterols of Tetraselmis (Prasinophyceae). Comp Biochem Phys 105B:253–256

    CAS  Google Scholar 

  • Qin JG (2008) Larval fish nutrition and rearing technologies: state of the art and future. In: Schwartz SH (ed) Aquaculture research trends. Nova Science Publishers, New York, pp 1–36

    Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty-acid and lipid-content of marine microalgae. J Phycol 30:972–979

    Article  CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Oie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155:207–221

    Article  Google Scholar 

  • Rzama A, Dufourc EJ, Arreguy B (1994) Sterols from green and blue-green-algae grown on reused waste-water. Phytochemistry 37:1625–1628

    Article  CAS  Google Scholar 

  • Sijtsma L, de Swaaf ME (2004) Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biot 64:146–153

    Article  CAS  Google Scholar 

  • Siron R, Giusti G, Berland B (1989) Changes in the fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Mar Ecol Prog Ser 50:95–100

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Sukenik A, Livne A (1991) Variations in lipid and fatty acid content in relation to acetyl CoA carboxylase in the marine prymnesiophyte Isochrysis galbana. Plant Cell Physiol 32:371–378

    Article  CAS  Google Scholar 

  • Tani Y, Okumura M, Li S (1987) Liquid wax ester production by Euglena gracilis. Agr Biol Chem 51:225–230

    CAS  Google Scholar 

  • Tonon T, Harvey D, Larson TR, Graham IA (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61:15–24

    Article  CAS  PubMed  Google Scholar 

  • Tsitsa-Tzardis E, Patterson GW, Wikfors GH, Gladu PK, Harrison D (1993) Sterols of Chaetoceros and Skeletonema. Lipids 28:465–467

    Article  CAS  Google Scholar 

  • Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  CAS  PubMed  Google Scholar 

  • Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yield of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc 74:1431–1431

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Qin, J.G. (2017). Lipid-Containing Secondary Metabolites from Algae. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50436-0_225

Download citation

Publish with us

Policies and ethics