Yarrowia lipolytica as a Cell Factory for Oleochemical Biotechnology

  • Kelly A. Markham
  • Lauren Cordova
  • Andrew Hill
  • Hal S. Alper
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Yarrowia lipolytica is one of the more popularly studied nonconventional yeasts due to its innate abilities to accumulate lipids and utilize diverse carbon substrates. In this chapter, we discuss several recent oleochemical applications of Y. lipolytica that are currently under investigation. These applications include the production of single cell oil, various modified fatty acids, citric acid, lipase, and other compounds. Additionally, we cover the lipophilic nature of Y. lipolytica in catabolic applications including bioremediation of oil-polluted water and soil. Finally, we address future outlooks for the cost-effective production of these chemicals in Y. lipolytica.

Notes

Acknowledgments

This work was funded by the Welch Foundation under Grant F-1753 and the Office of Naval Research under Grant N00014-15-1-2785.

References

  1. Amaral PFF, da Silva JM, Lehocky M, Barros-Timmons AMV, Coelho MAZ, Marrucho IM, Coutinho JAP (2006) Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochem 41(8):1894–1898CrossRefGoogle Scholar
  2. Angumeenal AR, Venkappayya D (2013) An overview of citric acid production. LWT Food Sci Technol 50(2):367–370CrossRefGoogle Scholar
  3. Anita Rywińska WR (2010) High-yield production of citric acid by Yarrowia lipolytica on glycerol in repeated-batch bioreactors. Microbiol Biotechnol 37:431CrossRefGoogle Scholar
  4. Bailey R, Madden KT, Trueheart J (2010) Production of carotenoids in oleaginous yeast and fungi, Google PatentsGoogle Scholar
  5. Bankar A, Kumar A, Zinjarde S (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84(5):847–865PubMedCrossRefGoogle Scholar
  6. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74(24):7779–7789PubMedPubMedCentralCrossRefGoogle Scholar
  7. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009a) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48(6):375–387PubMedCrossRefGoogle Scholar
  8. Beopoulos A, Chardot T, Nicaud JM (2009b) Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91(6):692–696PubMedCrossRefGoogle Scholar
  9. Beopoulos A, Verbeke J, Bordes F, Guicherd M, Bressy M, Marty A, Nicaud JM (2014) Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 98(1):251–262PubMedCrossRefGoogle Scholar
  10. Blazeck J, Liu L, Knight R, Alper HS (2013) Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J Biotechnol 165(3–4):184–194PubMedCrossRefGoogle Scholar
  11. Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:3131PubMedCrossRefGoogle Scholar
  12. Blazeck J, Hill A, Jamoussi M, Pan A, Miller J, Alper HS (2015) Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng 32:66–73PubMedCrossRefGoogle Scholar
  13. Bonnarme P, Gillet B, Sepulchre AM, Role C, Beloeil JC, Ducrocq C (1995) Itaconate biosynthesis in Aspergillus terreus. J Bacteriol 177(12):3573–3578PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bordes F, Cambon E, Dossat-Letisse V, Andre I, Croux C, Nicaud JM, Marty A (2009) Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site. Chembiochem 10(10):1705–1713PubMedCrossRefGoogle Scholar
  15. Bourel G, Nicaud J-M, Nthangeni B, Santiago-Gomez P, Belin J-M, Husson F (2004) Fatty acid hydroperoxide lyase of green bell pepper: cloning in Yarrowia lipolytica and biogenesis of volatile aldehydes. Enzym Microb Technol 35(4):293–299CrossRefGoogle Scholar
  16. Braga A, Belo I (2015) Production of γ-decalactone by Yarrowia lipolytica: insights into experimental conditions and operating mode optimization. J Chem Technol Biotechnol 90(3):559–565CrossRefGoogle Scholar
  17. Casas-Godoy L, Meunchan M, Cot M, Duquesne S, Bordes F, Marty A (2014) Yarrowia lipolytica lipase Lip2: an efficient enzyme for the production of concentrates of docosahexaenoic acid ethyl ester. J Biotechnol 180:30–36PubMedCrossRefGoogle Scholar
  18. Celińska E, Grajek W (2013) A novel multigene expression construct for modification of glycerol metabolism in Yarrowia lipolytica. Microb Cell Factories 12(1):1–16CrossRefGoogle Scholar
  19. Chuang L-T, Chen D-C, Nicaud J-M, Madzak C, Chen Y-H, Huang Y-S (2010) Co-expression of heterologous desaturase genes in Yarrowia lipolytica. New Biotechnol 27(4):277–282CrossRefGoogle Scholar
  20. Coelho M, Amaral P, Belo I (2010) Yarrowia lipolytica: an industrial workhorse. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol 2:930–940Google Scholar
  21. Crolla A, Kennedy KJ (2004) Fed-batch production of citric acid by Candida lipolytica grown on n-paraffins. J Biotechnol 110(1):73–84PubMedCrossRefGoogle Scholar
  22. Cui C, Guan N, Xing C, Chen B, Tan T (2016) Immobilization of Yarrowia lipolytica lipase Ylip 2 for the biocatalytic synthesis of phytosterol ester in a water activity controlled reactor. Colloids Surf B Biointerfaces 146:490–497PubMedCrossRefGoogle Scholar
  23. Czabany T, Athenstaedt K, Daum G (2007) Synthesis, storage and degradation of neutral lipids in yeast. Biochim Biophys Acta 1771(3):299–309PubMedCrossRefGoogle Scholar
  24. da Silva Nde L, Maciel MR, Batistella CB, Maciel Filho R (2006) Optimization of biodiesel production from castor oil. Appl Biochem Biotechnol 129–132:405–414PubMedCrossRefGoogle Scholar
  25. da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27(1):30–39PubMedCrossRefGoogle Scholar
  26. Damude, H.G., et al., (2014) Docosahexaenoic acid producing strains of yarrowia lipolytica. Google PatentsGoogle Scholar
  27. Damude HG, Zhu QQ (2015) Delta-5 desaturases and their use in making polyunsaturated fatty acids. Google PatentsGoogle Scholar
  28. Damude H, Gillies P, Macool D, Picataggio S, Ragghianti J, Seip J, Xue Z, Yadav N, Zhang H, Zhu Q (2006) Docosahexaenoic acid producing strains of Yarrowia lipolytica. Google PatentsGoogle Scholar
  29. Davidow LS, Apostolakos D, O'Donnell MM, Proctor AR, Ogrydziak DM, Wing RA, Stasko I, DeZeeuw JR (1985) Integrative transformation of the yeast Yarrowia lipolytica. Curr Genet 10(1):39–48CrossRefGoogle Scholar
  30. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61(1):47–64PubMedPubMedCentralGoogle Scholar
  31. Dobrowolski A, Mituła P, Rymowicz W, Mirończuk AM (2016) Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresour Technol 207:237–243PubMedCrossRefGoogle Scholar
  32. Dulermo T, Nicaud JM (2011) Involvement of the G3P shuttle and beta-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13(5):482–491PubMedCrossRefGoogle Scholar
  33. Emond S, Montanier C, Nicaud JM, Marty A, Monsan P, Andre I, Remaud-Simeon M (2010) New efficient recombinant expression system to engineer Candida antarctica lipase B. Appl Environ Microbiol 76(8):2684–2687PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fickers P, Le Dall MT, Gaillardin C, Thonart P, Nicaud JM (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods 55(3):727–737PubMedCrossRefGoogle Scholar
  35. Fickers P, Nicaud JM, Gaillardin C, Destain J, Thonart P (2004) Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. J Appl Microbiol 96(4):742–749PubMedCrossRefGoogle Scholar
  36. Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5(6–7):527–543PubMedCrossRefGoogle Scholar
  37. Fickers P, Marty A, Nicaud JM (2011) The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv 29(6):632–644PubMedCrossRefGoogle Scholar
  38. Finogenova TV, Kamzolova SV, Dedyukhina EG, Shishkanova NV, Il'chenko AP, Morgunov IG, Chernyavskaya OG, Sokolov AP (2002) Biosynthesis of citric and isocitric acids from ethanol by mutant Yarrowia lipolytica N 1 under continuous cultivation. Appl Microbiol Biotechnol 59(4–5):493–500PubMedGoogle Scholar
  39. Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG (2005) Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl Biochem Microbiol 41(5):418–425CrossRefGoogle Scholar
  40. Fontanille P, Kumar V, Christophe G, Nouaille R, Larroche C (2012) Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour Technol 114:443–449PubMedCrossRefGoogle Scholar
  41. Friedlander J, Tsakraklides V, Kamineni A, Greenhagen EH, Consiglio AL, MacEwen K, Crabtree DV, Afshar J, Nugent RL, Hamilton MA, Joe Shaw A, South CR, Stephanopoulos G, Brevnova EE (2016) Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechn Biofuels 9(1):1–12CrossRefGoogle Scholar
  42. Fu GY, Lu Y, Chi Z, Liu GL, Zhao SF, Jiang H, Chi ZM (2016) Cloning and characterization of a pyruvate carboxylase gene from penicillium rubens and overexpression of the gene in the yeast Yarrowia lipolytica for enhanced citric acid production. Mar Biotechnol (NY) 18(1):1–14CrossRefGoogle Scholar
  43. Gajdoš P, Nicaud J-M, Rossignol T, Čertík M (2015) Single cell oil production on molasses by Yarrowia lipolytica strains overexpressing DGA2 in multicopy. Appl Microbiol Biotechnol 99(19):8065–8074PubMedCrossRefGoogle Scholar
  44. Gao S, Tong Y, Wen Z, Zhu L, Ge M, Chen D, Jiang Y, Yang S (2016) Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system. J Ind Microbiol Biotechnol 43(8):1085–1093PubMedCrossRefGoogle Scholar
  45. Gomes N, Teixeira JA, Belo I (2012) Fed-batch versus batch cultures of Yarrowia lipolytica for γ-decalactone production from methyl ricinoleate. Biotechnol Lett 34(4):649–654PubMedCrossRefGoogle Scholar
  46. Goncalves FA, Colen G, Takahashi JA (2014) Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci World J 2014:476207CrossRefGoogle Scholar
  47. Grenfell-Lee D, Zeller S, Cardoso R, Pucaj K (2014) The safety of β-carotene from Yarrowia lipolytica. Food Chem Toxicol 65:1–11PubMedCrossRefGoogle Scholar
  48. Groenewald M, Boekhout T, Neuveglise C, Gaillardin C, van Dijck PW, Wyss M (2014) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40(3):187–206PubMedCrossRefGoogle Scholar
  49. Guerzoni ME, Lanciotti R, Vannini L, Galgano F, Favati F, Gardini F, Suzzi G (2001) Variability of the lipolytic activity in Yarrowia lipolytica and its dependence on environmental conditions. Int J Food Microbiol 69(1–2):79–89PubMedCrossRefGoogle Scholar
  50. Juretzek T, Le Dall M, Mauersberger S, Gaillardin C, Barth G, Nicaud J (2001) Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 18(2):97–113PubMedCrossRefGoogle Scholar
  51. Kamzolova SV, Shishkanova NV, Morgunov IG, Finogenova TV (2003) Oxygen requirements for growth and citric acid production of Yarrowia lipolytica. FEMS Yeast Res 3(2):217–222PubMedCrossRefGoogle Scholar
  52. Kamzolova SV, Finogenova TV, Morgunov IG (2008) Microbiological production of citric and isocitric acids from sunflower oil. Food Technol Biotechnol 46(1):51Google Scholar
  53. Kanamasa S, Dwiarti L, Okabe M, Park EY (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biotechnol 80(2):223–229PubMedCrossRefGoogle Scholar
  54. Koch B, Schmidt C, Daum G (2014) Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 38(5):892–915PubMedCrossRefGoogle Scholar
  55. Kretzschmar A, Otto C, Holz M, Werner S, Hubner L, Barth G (2013) Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining. Curr Genet 59(1–2):63–72PubMedCrossRefGoogle Scholar
  56. Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud JM (2016) Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng 38:38–46PubMedCrossRefGoogle Scholar
  57. Ledesma-Amaro, R., Z. Lazar, M. Rakicka, Z. Guo, F. Fouchard, A.-M. C.-L. Coq and J.-M. Nicaud Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metab Eng 38:115–124Google Scholar
  58. Li H, Alper HS (2016) Enabling xylose utilization in Yarrowia lipolytica for lipid production. Biotechnol J 11:1230–1240Google Scholar
  59. Liu L, Alper HS (2014) Draft genome sequence of the oleaginous yeast Yarrowia lipolytica PO1f, a commonly used metabolic engineering host. Genome Announc 2(4):e00652–14Google Scholar
  60. Liu H-H, Ji X-J, Huang H (2015c) Biotechnological applications of Yarrowia lipolytica: past, present and future. Biotechnol Adv 33(8):1522–1546PubMedCrossRefGoogle Scholar
  61. Liu L, Markham K, Blazeck J, Zhou N, Leon D, Otoupal P, Alper HS (2015a) Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant. Metab Eng 31:102–111PubMedCrossRefGoogle Scholar
  62. Liu L, Pan A, Spofford C, Zhou N, Alper HS (2015b) An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica. Metab Eng 29:36–45PubMedCrossRefGoogle Scholar
  63. Lopez-Huertas E (2010) Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacol Res 61(3):200–207PubMedCrossRefGoogle Scholar
  64. Lu-Te Chuang, Dzi-Chi Chen, Ying-Hsuan Chen, Jean-Marc Nicaud, Catherine Madzak, and Yung-Sheng Huang (2009) Production of functional gamma-linolenic acid (GLA) by expression of fungal Δ12- and Δ6-desaturase genes in the oleaginous yeast Yarrowia lipolytica. In: Biocatalysis and agricultural biotechnology. Taylor & Francis Group, Boca Raton, pp 164–179Google Scholar
  65. Matthäus F, Ketelhot M, Gatter M, Barth G (2014) Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Appl Environ Microbiol 80(5):1660–1669PubMedPubMedCentralCrossRefGoogle Scholar
  66. Moeller L, Grunberg M, Zehnsdorf A, Aurich A, Bley T, Strehlitz B (2011) Repeated fed-batch fermentation using biosensor online control for citric acid production by Yarrowia lipolytica. J Biotechnol 153(3–4):133–137PubMedCrossRefGoogle Scholar
  67. Morgunov I, Kamzolova S, Lunina J (2013) The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation. Appl Microbiol Biotechnol 97(16):7387–7397PubMedCrossRefGoogle Scholar
  68. Nambou K, Jian X, Zhang X, Wei L, Lou J, Madzak C, Hua Q (2015) Flux balance analysis inspired bioprocess upgrading for lycopene production by a metabolically engineered strain of Yarrowia lipolytica. Metabolites 5(4):794–813PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nicaud JM, Madzak C, van den Broek P, Gysler C, Duboc P, Niederberger P, Gaillardin C (2002) Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res 2(3):371–379PubMedGoogle Scholar
  70. Oh Y-S, Maeng J, Kim S-J (2000) Use of microorganism-immobilized polyurethane foams to absorb and degrade oil on water surface. Appl Microbiol Biotechnol 54(3):418–423PubMedCrossRefGoogle Scholar
  71. Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84(4):597–606PubMedCrossRefGoogle Scholar
  72. Oswal N, Sarma PM, Zinjarde SS, Pant A (2002) Palm oil mill effluent treatment by a tropical marine yeast. Bioresour Technol 85(1):35–37PubMedCrossRefGoogle Scholar
  73. Pagot Y, Endrizzi A, Nicaud JM, Belin JM (1997) Utilization of an auxotrophic strain of the yeast Yarrowia lipolytica to improve γ-decalactone production yields. Lett Appl Microbiol 25(2):113–116PubMedCrossRefGoogle Scholar
  74. Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82(1):43–49PubMedCrossRefGoogle Scholar
  75. Papanikolaou S, Aggelis G (2009) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol 21(4):83–87CrossRefGoogle Scholar
  76. Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002a) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58(3):308–312PubMedCrossRefGoogle Scholar
  77. Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2002b) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 92(4):737–744PubMedCrossRefGoogle Scholar
  78. Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32(1):60–71CrossRefGoogle Scholar
  79. Papanikolaou S, Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Nicaud JM, Aggelis G (2009) Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur J Lipid Sci Technol 111(12):1221–1232CrossRefGoogle Scholar
  80. Pereira-Meirelles FV, Rocha-Leão MHM, Sant’Anna GL (1997) A stable lipase from Candida lipolytica. In: Davison BH, Wyman CE, Finkelstein M (eds) Biotechnology for fuels and chemicals: proceedings of the eighteenth symposium on biotechnology for fuels and chemicals held May 5–9, 1996, at Gatlinburg, Tennessee. Humana Press, Totowa, pp 73–85CrossRefGoogle Scholar
  81. Pfleger BF, Gossing M, Nielsen J (2015) Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 29:1–11PubMedCrossRefGoogle Scholar
  82. Pignede G, Wang H, Fudalej F, Gaillardin C, Seman M, Nicaud JM (2000a) Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol 182(10):2802–2810PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pignede G, Wang HJ, Fudalej F, Seman M, Gaillardin C, Nicaud JM (2000b) Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol 66(8):3283–3289PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pomraning KR, Baker SE (2015) Draft genome sequence of the dimorphic yeast Yarrowia lipolytica strain W29. Genome Announc 3(6):e01211–e01215PubMedPubMedCentralCrossRefGoogle Scholar
  85. Qiao K, Imam Abidi SH, Liu H, Zhang H, Chakraborty S, Watson N (2015) Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng 29:56–65PubMedCrossRefGoogle Scholar
  86. Quinn Zhu, S. P., et al. (2015). Metabolic engineering of an oleacinous yeast for the production of omega-3 fatty acids. Single Cell Oils: Microbial Algal Oils. C. R. Zvi CohenGoogle Scholar
  87. Rodriguez GM, Hussain MS, Gambill L, Gao D, Yaguchi A, Blenner M (2016) Engineering xylose utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway. Biotechnol Biofuels 9(1):1–15CrossRefGoogle Scholar
  88. Rothman D, DeLuca P, Zurier RB (1995) Botanical lipids: effects on inflammation, immune responses, and rheumatoid arthritis. Semin Arthritis Rheum 25(2):87–96PubMedCrossRefGoogle Scholar
  89. Rutter CD, Rao CV (2016) Production of 1-decanol by metabolically engineered Yarrowia lipolytica. Metab Eng 38:139–147PubMedCrossRefGoogle Scholar
  90. Ruxton CHS, Reed SC, Simpson MJA, Millington KJ (2004) The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Diet 17(5):449–459PubMedCrossRefGoogle Scholar
  91. Rymowicz W, Rywińska A, Gładkowski W (2008) Simultaneous production of citric acid and erythritol from crude glycerol by Yarrowia lipolytica Wratislavia K1. Chem Pap 62(3):239–246CrossRefGoogle Scholar
  92. Rywinska A, Rymowicz W (2010) High-yield production of citric acid by Yarrowia lipolytica on glycerol in repeated-batch bioreactors. J Ind Microbiol Biotechnol 37(5):431–435PubMedCrossRefGoogle Scholar
  93. Rywinska A, Rymowicz W, Zarowska B, Wojtatowicz M (2009) Biosynthesis of citric acid from glycerol by acetate mutants of Yarrowia lipolytica in fed-batch fermentation. Food Technol Biotechnol 47(1):1–6Google Scholar
  94. Rywinska A, Juszczyk P, Wojtatowicz M, Rymowicz W (2011) Chemostat study of citric acid production from glycerol by Yarrowia lipolytica. J Biotechnol 152(1–2):54–57PubMedCrossRefGoogle Scholar
  95. Rywinska A, Musial I, Rymowicz W, Zarowska B, Boruczkowski T (2012) Effect of agitation and aeration on the citric acid production by Yarrowia lipolytica grown on glycerol. Prep Biochem Biotechnol 42(3):279–291PubMedCrossRefGoogle Scholar
  96. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108PubMedCrossRefGoogle Scholar
  97. Schwartz CM, Hussain MS, Blenner M, Wheeldon I (2016) Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR–Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth Biol 5(4):356–359PubMedCrossRefGoogle Scholar
  98. Scioli C, Vollaro L (1997) The use of Yarrowia lipolytica to reduce pollution in olive mill wastewaters. Water Res 31(10):2520–2524CrossRefGoogle Scholar
  99. Singh, S. P., S. S. Robert, P. D. Nichols, S. I. E. Blackburn, X. R. Zhou, J. R. Petrie and A. G. Green (2014). Synthesis of long-chain polyunsaturated fatty acids by recombinant cell, Google Patents.Google Scholar
  100. Swanson D, Block R, Mousa SA (2012) Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr: Int Rev J 3(1):1–7CrossRefGoogle Scholar
  101. Szabo R (1999) Dimorphism in Yarrowia lipolytica: filament formation is suppressed by nitrogen starvation and inhibition of respiration. Folia Microbiol (Praha) 44(1):19–24CrossRefGoogle Scholar
  102. Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9PubMedCrossRefGoogle Scholar
  103. Tan MJ, Chen X, Wang YK, Liu GL, Chi ZM (2016) Enhanced citric acid production by a yeast Yarrowia lipolytica over-expressing a pyruvate carboxylase gene. Bioprocess Biosyst Eng 39:1289–1296Google Scholar
  104. Tate BE (1981) Itaconic acid and derivatives. In: Grayson M, Eckroth E (eds) Kirk-Othmer: Encyclopedia of chemical technology. Wiley, New York, pp 865–873Google Scholar
  105. Tsai, Y. C., M. C. Huang, S. F. Lin and Y. C. Su (2000). Method for the production of itaconic acid using aspergillus terreus solid state fermentation. United States, National Science Council. US 6171831 B1Google Scholar
  106. Tsigie YA, Wang C-Y, Truong C-T, Ju Y-H (2011) Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 102(19):9216–9222PubMedCrossRefGoogle Scholar
  107. Waché Y, Pagot Y, Nicaud J-M, Belin J-M (1998) Acyl-CoA oxidase, a key step for lactone production by Yarrowia lipolytica. J Mol Catal B Enzym 5(1–4):165–169CrossRefGoogle Scholar
  108. Wagner JM, Alper HS (2016) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol 89:126–136PubMedCrossRefGoogle Scholar
  109. Wang G, Liu Z, Xu L, Yan Y (2014) Aromatic amino acid mutagenesis at the substrate binding pocket of Yarrowia lipolytica lipase Lip2 affects its activity and thermostability. Sci World J 2014:382581Google Scholar
  110. Wang G, Xiong X, Ghogare R, Wang P, Meng Y, Chen S (2016) Exploring fatty alcohol-producing capability of Yarrowia lipolytica. Biotechnol Biofuels 9(1):1–10CrossRefGoogle Scholar
  111. Wen S, Tan T, Zhao H (2012) Improving the thermostability of lipase Lip2 from Yarrowia lipolytica. J Biotechnol 164(2):248–253PubMedCrossRefGoogle Scholar
  112. Xue, Z., N. S. Yadav and Q. Q. Zhu (2012). Optimized strains of Yarrowia lipolytica for high eicosapentaenoic acid production, Google Patents.Google Scholar
  113. Xue Z, Sharpe PL, Hong S-P, Yadav NS, Xie D, Short DR, Damude HG, Rupert RA, Seip JE, Wang J, Pollak DW, Bostick MW, Bosak MD, Macool DJ, Hollerbach DH, Zhang H, Arcilla DM, Bledsoe SA, Croker K, McCord EF, Tyreus BD, Jackson EN, Zhu Q (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotech 31(8):734–740CrossRefGoogle Scholar
  114. Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vybornaya TV, Larina AS, Matsui K, Fukui K, Sineoky SP (2010) Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol Bioeng 107(4):673–682PubMedCrossRefGoogle Scholar
  115. Yuzbashev TV, Yuzbasheva EY, Vibornaya TV, Sobolevskaya TI, Laptev IA, Gavrikov AV, Sineoky SP (2012) Production of recombinant Rhizopus oryzae lipase by the yeast Yarrowia lipolytica results in increased enzymatic thermostability. Protein Expr Purif 82(1):83–89PubMedCrossRefGoogle Scholar
  116. Zhang H, Zhang L, Chen H, Chen YQ, Chen W, Song Y, Ratledge C (2014) Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP: citrate lyase from Mus musculus. J Biotechnol 192 Pt A:78–84PubMedCrossRefGoogle Scholar
  117. Zhao C-H, Cui W, Liu X-Y, Chi Z-M, Madzak C (2010) Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials. Metab Eng 12(6):510–517PubMedCrossRefGoogle Scholar
  118. Zhu Q, Jackson EN (2015) Metabolic engineering of Yarrowia lipolytica for industrial applications. Curr Opin Biotechnol 36:65–72PubMedCrossRefGoogle Scholar
  119. Zogała B, Robak M, Rymowicz W, Wzientek K, Rusin M, Maruszczak J (2005) Geoelectrical observation of Yarrowia lipolytica bioremediation of petrol-contaminated soil. Pol J Environ Stud 14(5):665–669Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Kelly A. Markham
    • 1
  • Lauren Cordova
    • 1
  • Andrew Hill
    • 1
  • Hal S. Alper
    • 1
    • 2
  1. 1.McKetta Department of Chemical EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinUSA

Personalised recommendations