Advertisement

Metagenomic Mining of Enzyme Diversity

  • Marco A. Distaso
  • Hai Tran
  • Manuel Ferrer
  • Peter N. Golyshin
Reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

In the present there is a great necessity of suitable biocatalysts with high process performance, as a “greener” complementary alternative to the chemical synthesis. It is expected that in the coming decade, up to 40% of bulk chemical synthesis processes could be substituted by enzymatic catalysis. The identification and optimization of an appropriate enzyme represent important requirements to obtain a successful and efficient enzymatic process. In this context, the establishment of enzymatic processes in the industry is mainly a problem of finding and optimizing new enzymes. In this sense, nature is the richest reservoir from which enzymes can be isolated because they are continuously changing and evolving as a consequence of natural processes of selection. We are now taking advantages of sequencing and extensive screening technologies to develop enzyme discovery strategies and to identify microbial enzymes with improved and unusual activities and specificities. These approaches, in combination with modern protein engineering methods and distinct combinatorial and rational methods, will increase our chances to generate new stabilized biocatalysts that fit industrial requirements. Here, we review the methodologies, obstacles, and solving problems around metagenomics investigations to screen for enzymes with activities of interest.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support provided by the European Community project KILL-SPILL (FP7-KBBE-2012-312139) European Union’s Horizon 2020 Project INMARE (grant agreement No 634486. This work was further funded by grants BIO2011-25012, PCIN-2014-107, and BIO2014-54494-R from the Spanish Ministry of Economy and Competitiveness. The present investigation was funded by the Spanish Ministry of Economy and Competitiveness, the UK Biotechnology and Biological Sciences Research Council (BBSRC) (Grant Nr BB/MO29085/1) within the ERA NET-IB2 program, grant number ERA-IB-14-030. MF gratefully acknowledges the financial support provided by the European Regional Development Fund (ERDF).

References

  1. Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4(1):117–139.  https://doi.org/10.3390/biom4010117 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret J-C et al (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci 107(9):4004–4009.  https://doi.org/10.1073/pnas.0910781107 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Araújo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransform 26(5):332–349.  https://doi.org/10.1080/10242420802390457 CrossRefGoogle Scholar
  4. Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22(5):618–626.  https://doi.org/10.1016/j.copbio.2011.06.010 PubMedCrossRefGoogle Scholar
  5. Bargiela R, Gertler C, Magagnini M, Mapelli F, Chen J, Daffonchio D et al (2015) Degradation network reconstruction in uric acid and ammonium amendments in oil-degrading marine microcosms guided by metagenomic data. Front Microbiol 6:1270.  https://doi.org/10.3389/fmicb.2015.01270 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science (New York, NY) 289(5486):1902–1906.  https://doi.org/10.1126/science.289.5486.1902 CrossRefGoogle Scholar
  7. Bell PJL, Sunna A, Curach NC, Bergquist PL, Gibbs MD, Nevalainen H (2002) Prospecting for novel lipase genes using PCR a. Microbiology 148(8):2283–2291.  https://doi.org/10.1099/00221287-148-8-2283 PubMedCrossRefGoogle Scholar
  8. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26.  https://doi.org/10.1038/ja.2005.1 PubMedCrossRefGoogle Scholar
  9. Bergquist PL, Hardiman EM, Ferrari BC, Winsley T (2009) Applications of flow cytometry in environmental microbiology and biotechnology. Extremophiles.  https://doi.org/10.1007/s00792-009-0236-4 Springer JapanGoogle Scholar
  10. Blanco L, Bernad A, Lázaro JM, Martín G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phage phi29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264(15):8935–8940PubMedGoogle Scholar
  11. Bommarius AS, Paye MF, Bornscheuer UT, Pohl M, Lutz S, Ma SK et al (2013) Stabilizing biocatalysts. Chem Soc Rev 42(15):6534.  https://doi.org/10.1039/c3cs60137d PubMedCrossRefGoogle Scholar
  12. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194.  https://doi.org/10.1038/nature11117 PubMedCrossRefGoogle Scholar
  13. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci 106(34):14195–14200.  https://doi.org/10.1073/pnas.0903542106 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brzostowicz PC, Walters DM, Thomas SM, Nagarajan V, Rouvière PE (2003) mRNA differential display in a microbial enrichment culture: simultaneous identification of three cyclohexanone monooxygenases from three species. Appl Environ Microbiol 69(1):334–342PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chen I-C, Thiruvengadam V, Lin W-D, Chang H-H, Hsu W-H (2010) Lysine racemase: a novel non-antibiotic selectable marker for plant transformation. Plant Mol Biol 72(1–2):153–169.  https://doi.org/10.1007/s11103-009-9558-y PubMedCrossRefGoogle Scholar
  16. Cheng J, Pinnell L, Engel K, Neufeld JD, Charles TC (2014) Versatile broad-host-range cosmids for construction of high quality metagenomic libraries. J Microbiol Methods 99:27–34.  https://doi.org/10.1016/j.mimet.2014.01.015 PubMedCrossRefGoogle Scholar
  17. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443.  https://doi.org/10.1016/S0958-1669(03)00099-5 PubMedCrossRefGoogle Scholar
  18. Coll-Lladó M, Acinas SG, Pujades C, Pedrós-Alió C (2011) Transcriptome fingerprinting analysis: an approach to explore gene expression patterns in marine microbial communities. PLoS ONE 6(8):e22950.  https://doi.org/10.1371/journal.pone.0022950 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Craig JW, Chang F-Y, Kim JH, Obiajulu SC, Brady SF (2010) Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl Environ Microbiol 76(5):1633–1641.  https://doi.org/10.1128/AEM.02169-09 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Curtis TP, Sloan WT (2005) Microbiology. Exploring microbial diversity – a vast below. Science (New York, NY) 309(5739):1331–1333.  https://doi.org/10.1126/science.1118176 CrossRefGoogle Scholar
  21. Davis BG, Boyer V (2001) Biocatalysis and enzymes in organic synthesis. Nat Prod Rep 18(6): 618–640.Google Scholar
  22. de Carvalho CCCR (2011) Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 29(1):75–83.  https://doi.org/10.1016/j.biotechadv.2010.09.001 PubMedCrossRefGoogle Scholar
  23. de Carvalho CCCR (2016) Whole cell biocatalysts: essential workers from nature to the industry. Microb Biotechnol.  https://doi.org/10.1111/1751-7915.12363 PubMedPubMedCentralGoogle Scholar
  24. Demain AL, Adrio JL (2008) Contributions of microorganisms to industrial biology. Mol Biotechnol 38(1):41–55.  https://doi.org/10.1007/s12033-007-0035-z PubMedCrossRefGoogle Scholar
  25. Fernández-Arrojo L, Guazzaroni M-E, López-Cortés N, Beloqui A, Ferrer M (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21(6):725–733.  https://doi.org/10.1016/j.copbio.2010.09.006 PubMedCrossRefGoogle Scholar
  26. Ferrer M, Martínez-Abarca F, Golyshin PN (2005a) Mining genomes and “metagenomes” for novel catalysts. Curr Opin Biotechnol 16(6):588–593.  https://doi.org/10.1016/j.copbio.2005.09.001 PubMedCrossRefGoogle Scholar
  27. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Martins dos Santos VAP, Yakimov MM et al (2005b) Microbial enzymes mined from the urania deep-sea hypersaline anoxic basin. Chem Biol 12(8):895–904.  https://doi.org/10.1016/j.chembiol.2005.05.020 PubMedCrossRefGoogle Scholar
  28. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Dos Santos VAPM et al (2005c) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7(12):1996–2010.  https://doi.org/10.1111/j.1462-2920.2005.00920.x PubMedCrossRefGoogle Scholar
  29. Ferrer M, Golyshina O, Beloqui A, Golyshin PN (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10(3):207–214.  https://doi.org/10.1016/j.mib.2007.05.004 PubMedCrossRefGoogle Scholar
  30. Ferrer M, Beloqui A, Timmis KN, Golyshin PN (2009) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 16(1–2):109–123.  https://doi.org/10.1159/000142898 PubMedCrossRefGoogle Scholar
  31. Ferrer M, Beloqui A, Golyshin PN (2010) Screening metagenomic libraries for laccase activities. Methods Mol Biol (Clifton, NJ) 668:189–202.  https://doi.org/10.1007/978-1-60761-823-2_13 CrossRefGoogle Scholar
  32. Ferrer M, Bargiela R, Martínez-Martínez M, Mir J, Koch R, Golyshina OV, Golyshin PN (2015) Biodiversity for biocatalysis: a review of the α/β-hydrolase fold superfamily of esterases-lipases discovered in metagenomes. Biocat Biotransform 33(5–6):235–249.  https://doi.org/10.3109/10242422.2016.1151416 CrossRefGoogle Scholar
  33. Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 9(1):22–34.  https://doi.org/10.1111/1751-7915.12309 PubMedCrossRefGoogle Scholar
  34. Gabor EM, de Vries EJ, Janssen DB (2004) Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases. Environ Microbiol 6(9):948–958.  https://doi.org/10.1111/j.1462-2920.2004.00643.x PubMedCrossRefGoogle Scholar
  35. Gabor E, Liebeton K, Niehaus F, Eck J, Lorenz P (2007) Updating the metagenomics toolbox. Biotechnol J 2(2):201–206.  https://doi.org/10.1002/biot.200600250 PubMedCrossRefGoogle Scholar
  36. Galvão TC, Mohn WW, de Lorenzo V (2005) Exploring the microbial biodegradation and biotransformation gene pool. Trends Biotechnol 23(10):497–506.  https://doi.org/10.1016/j.tibtech.2005.08.002 PubMedCrossRefGoogle Scholar
  37. Ge J, Lu D, Liu Z, Liu Z (2009) Recent advances in nanostructured biocatalysts. Biochem Eng J 44(1):53–59.  https://doi.org/10.1016/j.bej.2009.01.002 CrossRefGoogle Scholar
  38. Goll J, Rusch DB, Tanenbaum DM, Thiagarajan M, Li K, Methé BA, Yooseph S (2010) METAREP: JCVI metagenomics reports – an open source tool for high-performance comparative metagenomics. Bioinformatics (Oxford, England) 26(20):2631–2632.  https://doi.org/10.1093/bioinformatics/btq455 CrossRefGoogle Scholar
  39. Golyshina OV, Lünsdorf H, Kublanov IV, Goldenstein NI, Hinrichs KU, Golyshin PN (2016) The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. Nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov., of the order Thermoplasmatales. Int J Syst Evol Microbiol 66(1):332–340.  https://doi.org/10.1099/ijsem.0.000725 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42(4):223–225Google Scholar
  41. Gomes I, Gomes J, Steiner W (2003) Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresour Technol 90(2):207–214.  https://doi.org/10.1016/S0960-8524(03)00110-X PubMedCrossRefGoogle Scholar
  42. Gong J-S, Lu Z-M, Li H, Zhou Z-M, Shi J-S, Xu Z-H (2013) Metagenomic technology and genome mining: emerging areas for exploring novel nitrilases. Appl Microbiol Biotechnol 97(15):6603–6611.  https://doi.org/10.1007/s00253-013-4932-8 PubMedCrossRefGoogle Scholar
  43. Guo Z, Xu X (2005) New opportunity for enzymatic modification of fats and oils with industrial potentials. Org Biomol Chem 3(14):2615–2619.  https://doi.org/10.1039/b506763d PubMedCrossRefGoogle Scholar
  44. Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59(1):15–32.  https://doi.org/10.1007/s00253-002-0975-y PubMedCrossRefGoogle Scholar
  45. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol .  https://doi.org/10.1007/s00253-004-1568-8 Springer-VerlagGoogle Scholar
  46. Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int .  https://doi.org/10.1155/2013/329121 Hindawi Publishing CorporationPubMedPubMedCentralGoogle Scholar
  47. Gustafsson H, Küchler A, Holmberg K, Walde P, Mateo C, Palomo JM et al (2015) Co-immobilization of enzymes with the help of a dendronized polymer and mesoporous silica nanoparticles. J Mater Chem B 3(30):6174–6184.  https://doi.org/10.1039/C5TB00543D CrossRefGoogle Scholar
  48. Hallin PF, Binnewies TT, Ussery DW, Fleischmann RD, Adams MD, White O et al (2008) The genome BLASTatlas – a GeneWiz extension for visualization of whole-genome homology. Mol BioSyst 4(5):363.  https://doi.org/10.1039/b717118h PubMedCrossRefGoogle Scholar
  49. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev: MMBR 68(4):669–685.  https://doi.org/10.1128/MMBR.68.4.669-685.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Harrington ED, Singh AH, Doerks T, Letunic I, von Mering C, Jensen LJ et al (2007) Quantitative assessment of protein function prediction from metagenomics shotgun sequences. Proc Natl Acad Sci U S A 104(35):13913–13918.  https://doi.org/10.1073/pnas.0702636104 PubMedPubMedCentralCrossRefGoogle Scholar
  51. He Z, Deng Y (2012) Development of functional gene microarrays for microbial community analysis. Curr Opin Biotechnol 23(1):49–55.  https://doi.org/10.1016/j.copbio.2011.11.001 PubMedCrossRefGoogle Scholar
  52. Herbert RA (1992) A perspective on the biotechnological potential of extremophiles. Trends Biotechnol 10:395–402.  https://doi.org/10.1016/0167-7799(92)90282-Z PubMedCrossRefGoogle Scholar
  53. Hess M (2008) Thermoacidophilic proteins for biofuel production. Trends Microbiol 16(9):414–419.  https://doi.org/10.1016/j.tim.2008.06.001 PubMedCrossRefGoogle Scholar
  54. Hjort K, Bergström M, Adesina MF, Jansson JK, Smalla K, Sjöling S (2010) Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol Ecol 71(2):197–207.  https://doi.org/10.1111/j.1574-6941.2009.00801.x PubMedCrossRefGoogle Scholar
  55. Hosokawa M, Hoshino Y, Nishikawa Y, Hirose T, Yoon DH, Mori T et al (2015) Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes. Biosens Bioelectron 67:379–385.  https://doi.org/10.1016/j.bios.2014.08.059 PubMedCrossRefGoogle Scholar
  56. Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3(1):39–46.  https://doi.org/10.1016/S1367-5931(99)80008-8 PubMedCrossRefGoogle Scholar
  57. Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, Szeto E et al (2008) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26(9):1029–1034.  https://doi.org/10.1038/nbt.1488 PubMedCrossRefGoogle Scholar
  58. Kazimierczak KA, Scott KP, Kelly D, Aminov RI (2009) Tetracycline resistome of the organic pig gut. Appl Environ Microbiol 75(6):1717–1722.  https://doi.org/10.1128/AEM.02206-08 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kim J, Kim BC, Lopez-Ferrer D, Petritis K, Smith RD (2010) Nanobiocatalysis for protein digestion in proteomic analysis. Proteomics 10(4):687–699.  https://doi.org/10.1002/pmic.200900519 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(6817):241–246.  https://doi.org/10.1038/35051719 PubMedCrossRefGoogle Scholar
  61. Knietsch A, Waschkowitz T, Bowien S, Henne A, Daniel R (2003) Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli. J Mol Microbiol Biotechnol 5(1):46–56 doi:68724Google Scholar
  62. Kodzius R (2016) Single-cell technologies in environmental omics. Gene 576(2):701–707.  https://doi.org/10.1016/j.gene.2015.10.031 PubMedCrossRefGoogle Scholar
  63. Koeller KM, Wong C-H (2001) Enzymes for chemical synthesis. Nature 409(6817):232–240.  https://doi.org/10.1038/35051706
  64. Kumar L, Awasthi G, Singh B (2011) Extremophiles: a novel source of industrially important enzymes. Biotechnology 10(2):121–135.  https://doi.org/10.3923/biotech.2011.121.135 CrossRefGoogle Scholar
  65. Kumar V, Marín-Navarro J, Shukla P (2016) Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. World J Microbiol Biotechnol .  https://doi.org/10.1007/s11274-015-2005-0. Springer NetherlandsGoogle Scholar
  66. Kyrpides NC, Hugenholtz P, Eisen JA, Woyke T, Göker M, Parker CT et al (2014) Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol 12(8):e1001920.  https://doi.org/10.1371/journal.pbio.1001920 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lam KN, Charles TC (2015) Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries. Microbiome 3:22.  https://doi.org/10.1186/s40168-015-0086-5 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lam KN, Cheng J, Engel K, Neufeld JD, Charles TC (2015) Current and future resources for functional metagenomics. Front Microbiol 6:1196.  https://doi.org/10.3389/fmicb.2015.01196 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lei C, Shin Y, Liu J, Ackerman EJ (2002) Entrapping enzyme in a functionalized nanoporous support. J Am Chem Soc 124(38):11242–11243.  https://doi.org/10.1021/ja026855o PubMedCrossRefGoogle Scholar
  70. Liang P, Averboukh L, Pardee AB (1993) Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res 21(14):3269–3275PubMedPubMedCentralCrossRefGoogle Scholar
  71. Liebl W, Angelov A, Juergensen J, Chow J, Loeschcke A, Drepper T et al (2014) Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-014-5961-7. Springer Berlin HeidelbergGoogle Scholar
  72. Liu M, Dai X, Guan R, Xu X (2014) Immobilization of Aspergillus niger xylanase A on Fe3O4-coated chitosan magnetic nanoparticles for xylooligosaccharide preparation. Catal Commun 55:6.  https://doi.org/10.1016/j.catcom.2014.06.002 CrossRefGoogle Scholar
  73. Loeschcke A, Markert A, Wilhelm S, Wirtz A, Rosenau F, Jaeger K-E, Drepper T (2013) TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth Biol 2(1):22–33.  https://doi.org/10.1021/sb3000657 PubMedCrossRefGoogle Scholar
  74. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nature 3:510–516.  https://doi.org/10.1038/nrmicro1161 Google Scholar
  75. Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles Life Under Extreme Cond 4(2):91–98CrossRefGoogle Scholar
  76. Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475.  https://doi.org/10.3389/fmicb.2015.00475 PubMedPubMedCentralGoogle Scholar
  77. Meyer F, Paarmann D, D’Souza M, Olson R, Glass E, Kubal M et al (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma 9(1):386.  https://doi.org/10.1186/1471-2105-9-386 CrossRefGoogle Scholar
  78. Mirete S, de Figueras CG, Gonzalez-Pastor JE (2007) Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl Environ Microbiol 73(19):6001–6011.  https://doi.org/10.1128/AEM.00048-07 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mitidieri S, Souza Martinelli AH, Schrank A, Vainstein MH (2006) Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations. Bioresour Technol 97(10):1217–1224.  https://doi.org/10.1016/j.biortech.2005.05.022 PubMedCrossRefGoogle Scholar
  80. Monsan P, O’Donohue MJ (2010) In: Soetaert W, Vandamme EJ (eds) Industrial biotechnology in the food and feed sector. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.  https://doi.org/10.1002/9783527630233 CrossRefGoogle Scholar
  81. Mori T, Kamei I, Hirai H, Kondo R (2014) Identification of novel glycosyl hydrolases with cellulolytic activity against crystalline cellulose from metagenomic libraries constructed from bacterial enrichment cultures. Springer Plus 3:365.  https://doi.org/10.1186/2193-1801-3-365 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Neufeld JD, Chen Y, Dumont MG, Murrell JC (2008) Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. Environ Microbiol 10(6):1526–1535.  https://doi.org/10.1111/j.1462-2920.2008.01568.x PubMedCrossRefGoogle Scholar
  83. Nguyen D, Zhang X, Jiang Z-H, Audet A, Paice MG, Renaud S, Tsang A (2008) Bleaching of kraft pulp by a commercial lipase: accessory enzymes degrade hexenuronic acids. Enzym Microb Technol 43(2):130–136.  https://doi.org/10.1016/j.enzmictec.2007.11.012 CrossRefGoogle Scholar
  84. Park S-J, Kang C-H, Chae J-C, Rhee S-K, Allgaier M, Uphoff H et al (2008) Metagenome microarray for screening of fosmid clones containing specific genes. FEMS Microbiol Lett 284(1):28–34.  https://doi.org/10.1111/j.1574-6968.2008.01180.x PubMedCrossRefGoogle Scholar
  85. Phale PS, Basu A, Majhi PD, Deveryshetty J, Vamsee-Krishna C, Shrivastava R (2007) Metabolic diversity in bacterial degradation of aromatic compounds. OMICS: J Integr Biol 11(3):252–279.  https://doi.org/10.1089/omi.2007.0004 CrossRefGoogle Scholar
  86. Placido A, Hai T, Ferrer M, Chernikova TN, Distaso M, Armstrong D et al (2015) Diversity of hydrolases from hydrothermal vent sediments of the Levante Bay, Vulcano Island (Aeolian archipelago) identified by activity-based metagenomics and biochemical characterization of new esterases and an arabinopyranosidase. Appl Microbiol Biotechnol 99:10031–10046.  https://doi.org/10.1007/s00253–015-6873-x PubMedPubMedCentralCrossRefGoogle Scholar
  87. Popovic A, Tchigvintsev A, Tran H, Chernikova TN, Golyshina OV, Yakimov MM et al (2015) Metagenomics as a tool for enzyme discovery: hydrolytic enzymes from marine-related metagenomes. Adv Exp Med Biol 883:1–20.  https://doi.org/10.1007/978-3-319-23603-2_1 PubMedCrossRefGoogle Scholar
  88. Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403(6770):646–649.  https://doi.org/10.1038/35001054 PubMedCrossRefGoogle Scholar
  89. Ram RJ, Verberkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC et al (2005) Community proteomics of a natural microbial biofilm. Science (New York, NY) 308(5730):1915–1920. https://doi.org/10.1126/science. 1109070 CrossRefGoogle Scholar
  90. Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6(9):981–989.  https://doi.org/10.1111/j.1462-2920.2004.00664.x PubMedCrossRefGoogle Scholar
  91. Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N et al (2014) Obtaining genomes from uncultivated environmental microorganisms using FACS–based single-cell genomics. Nat Protoc 9(5):1038–1048.  https://doi.org/10.1038/nprot.2014.067 PubMedCrossRefGoogle Scholar
  92. Sabree ZL, Rondon MR., Handelsman J (2009) Metagenomics. In: Schaechter M (ed), Encyclopedia of microbiology, 3rd ed. Amsterdam, the Netherlands, Elsevier Academic Press. p 622–633.Google Scholar
  93. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science (New York, NY) 239(4839):487–491.  https://doi.org/10.1126/science.2448875 CrossRefGoogle Scholar
  94. Scanlon TC, Dostal SM, Griswold KE (2014) A high-throughput screen for antibiotic drug discovery. Biotechnol Bioeng 111(2):232–243.  https://doi.org/10.1002/bit.25019 PubMedCrossRefGoogle Scholar
  95. Schiraldi C, De Rosa M (2002) The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20(12):515–521.  https://doi.org/10.1016/S0167-7799(02)02073-5 PubMedCrossRefGoogle Scholar
  96. Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2(7):e92.  https://doi.org/10.1371/journal.pcbi.0020092 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Schnoes AM, Brown SD, Dodevski I, Babbitt PC (2009) Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 5(12):e1000605.  https://doi.org/10.1371/journal.pcbi.1000605 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sheikh Abdul Hamid N, Zen HB, Tein OB, Halifah YM, Saari N, Bakar FA (2003) Screening and identification of extracellular lipase-producing thermophilic bacteria from a Malaysian hot spring. World J Microbiol Biotechnol 19(9):961–968.  https://doi.org/10.1023/B:WIBI.0000007330.84569.39 CrossRefGoogle Scholar
  99. Shukoor MI, Natalio F, Therese HA, Tahir MN, Ksenofontov V, Panthöfer M et al (2008) Fabrication of a silica coating on magnetic γ-Fe2O3 nanoparticles by an immobilized enzyme. Chem Mater 20(11):3567–3573.  https://doi.org/10.1021/cm7029954 CrossRefGoogle Scholar
  100. Simon C, Herath J, Rockstroh S, Daniel R (2009) Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice. Appl Environ Microbiol 75(9):2964–2968.  https://doi.org/10.1128/AEM.02644-08 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Singh BK (2010) Exploring microbial diversity for biotechnology: the way forward. Trends Biotechnol 28(3):111–116.  https://doi.org/10.1016/j.tibtech.2009.11.006 PubMedCrossRefGoogle Scholar
  102. Spits C, Le Caignec C, De Rycke M, Van Haute L, Van Steirteghem A, Liebaers I, Sermon K (2006) Whole-genome multiple displacement amplification from single cells. Nat Protoc 1(4):1965–1970.  https://doi.org/10.1038/nprot.2006.326 PubMedCrossRefGoogle Scholar
  103. Sul WJ, Park J, Quensen JF, Rodrigues JLM, Seliger L, Tsoi TV et al (2009) DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol 75(17):5501–5506.  https://doi.org/10.1128/AEM.00121-09 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tchigvintsev A, Tran H, Popovic A, Kovacic F, Brown G, Flick R et al (2015) The environment shapes microbial enzymes: five cold-active and salt-resistant carboxylesterases from marine metagenomes. Appl Microbiol Biotechnol 99(5):2165–2178.  https://doi.org/10.1007/s00253-014-6038-3 PubMedCrossRefGoogle Scholar
  105. Tran DN, Balkus KJ (2011) Perspective of recent progress in immobilization of enzymes. ACS Catal 1(8):956–968.  https://doi.org/10.1021/cs200124a CrossRefGoogle Scholar
  106. Turnbaugh PJ, Turnbaugh PJ, Ley RE, Ley RE, Hamady M, Hamady M et al (2007) The human microbiome project. Nature 449(7164):804–810.  https://doi.org/10.1038/nature06244 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43.  https://doi.org/10.1038/nature02340 PubMedCrossRefGoogle Scholar
  108. Uchiyama T, Miyazaki K (2010) Substrate-induced gene expression screening: a method for high-throughput screening of metagenome libraries. Methods Mol Biol (Clifton, NJ) 668:153–168.  https://doi.org/10.1007/978-1-60761-823-2_10 CrossRefGoogle Scholar
  109. Uchiyama T, Miyazaki K (2013) Metagenomic screening for aromatic compound-responsive transcriptional regulators. PLoS ONE 8(9):e75795.  https://doi.org/10.1371/journal.pone.0075795 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23(1):88–93.  https://doi.org/10.1038/nbt1048 PubMedCrossRefGoogle Scholar
  111. Valdés-Solís T, Rebolledo AF, Sevilla M, Valle-Vigón P, Bomatí-Miguel O, Fuertes AB, Tartaj P (2009) Preparation, characterization, and enzyme immobilization capacities of superparamagnetic silica/iron oxide nanocomposites with mesostructured porosity. Chem Mater 21(9):1806–1814.  https://doi.org/10.1021/cm8005937 CrossRefGoogle Scholar
  112. Van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol.  https://doi.org/10.1016/S1369-5274(03)00060-2 PubMedGoogle Scholar
  113. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science (New York, NY) 304(5667):66–74.  https://doi.org/10.1126/science.1093857 CrossRefGoogle Scholar
  114. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev: MMBR 65(1):1–43.  https://doi.org/10.1128/MMBR.65.1.1-43.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Walters DM, Russ R, Knackmuss H-J, Rouvière PE (2001) High-density sampling of a bacterial operon using mRNA differential display. Gene 273(2):305–315.  https://doi.org/10.1016/S0378-1119(01)00597-2 PubMedCrossRefGoogle Scholar
  116. Wexler M, Bond PL, Richardson DJ, Johnston AWB (2005) A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environ Microbiol 7(12):1917–1926.  https://doi.org/10.1111/j.1462-2920.2005.00854.x PubMedCrossRefGoogle Scholar
  117. Wild J, Hradecna Z, Szybalski W (2002) Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Res 12(9):1434–1444.  https://doi.org/10.1101/gr.130502 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wilson ZE, Brimble MA, Pikuta EV, Hoover RB, Tang J, MacElroy RD et al (2009) Molecules derived from the extremes of life. Nat Prod Rep 26(1):44–71.  https://doi.org/10.1039/B800164M PubMedCrossRefGoogle Scholar
  119. Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6(2):e1000667.  https://doi.org/10.1371/journal.pcbi.1000667 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Woyke T, Xie G, Copeland A, González JM, Han C, Kiss H et al (2009) Assembling the marine metagenome, one cell at a time. PLoS ONE 4(4):e5299.  https://doi.org/10.1371/journal.pone.0005299 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN et al (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7(9):1426–1441.  https://doi.org/10.1111/j.1462-5822.2005.00829.x PubMedCrossRefGoogle Scholar
  122. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H et al (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12(9):635–645.  https://doi.org/10.1038/nrmicro3330 PubMedCrossRefGoogle Scholar
  123. Yin H, Cao L, Qiu G, Wang D, Kellogg L, Zhou J et al (2007) Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in acid mine drainages and bioleaching systems. J Microbiol Methods 70(1):165–178.  https://doi.org/10.1016/j.mimet.2007.04.011 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Marco A. Distaso
    • 1
  • Hai Tran
    • 1
  • Manuel Ferrer
    • 2
  • Peter N. Golyshin
    • 3
  1. 1.School of Biological SciencesBangor UniversityBangorUK
  2. 2.CSIC, Institute of Catalysis, Dept. of Applied BiocatalysisMadridSpain
  3. 3.Immanuel Kant Baltic Federal University, Kaliningrad, Russia School of Biological SciencesUniversity of BangorBangorUK

Personalised recommendations