Skip to main content

Hydrocarbons from Algae

  • Reference work entry
  • First Online:
  • 1162 Accesses

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Hydrocarbons are detected in species of all algal phyla, but their contents are generally below 2% of algal dry weight skewed toward odd-carbon number, typically at C15, C17, or C21. Botryococcus braunii, a green colonial species (300–500 μm), contains exceptionally high hydrocarbons. Among the three races of B. braunii, race A contains C25–C31 n-alkadienes/trienes up to 61% dry weight and race B contains C31–C37 botryococcenes (triterpenes) up to 86% of dry weight. Race L contains lycopadienes (tetraterpene) C40H78 up to 8% dry weight. Cultures with 0.3% CO2-enriched air could shorten mass doubling time by 3.6 times. Nitrogen deficiency favors lipid accumulation, but nitrogen required for growth should be above 0.2 mg L−1. The optimal temperature for B. braunii is 20–25 °C with a light intensity of 60–100 Wm−2. Slow growth is the major hurdle retarding the production of hydrocarbon at a large scale. The combined approach of molecular biology, genetic engineering and ecology is recommended to escalate the algal growth and hydrocarbon production to yield a commercially competitive alternative for renewable biofuels from algae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antia NJ, Lee RF, Nevenzel JC, Cheng JY (1974) Wax ester production by the marine cryptomonad Chroomonas salina grown photoheterotrophically on glycerol. J Protozool 21:768–771

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee U (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  PubMed  Google Scholar 

  • Ben-Amotz A, Torbene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–78

    Article  CAS  Google Scholar 

  • Blumer M, Mullin MM, Guillard RRL (1970) A polyunsaturated hydrocarbon (3, 6, 9, 12, 15, 18-heneicosahexaene) in the marine food web. Mar Biol 6:226–235

    Article  CAS  Google Scholar 

  • Blumer M, Guillard RRL, Chase T (1971) Hydrocarbons of marine phytoplankton. Mar Biol 8:183–189

    Article  CAS  Google Scholar 

  • Brown AC, Knights BA (1969) Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry 8:543–547

    Article  CAS  Google Scholar 

  • Cane RF (1969) Coorongite and the genesis of oil shale. Geochim Cosmochim Acta 33:569–577

    Article  Google Scholar 

  • Casadevall E, Largeau C, Metzger P, Chirac C, Berkaloff C, Coute A (1983) Hydrocarbon production by unicellular microalga Botryococcus braunii. Biosciences 2:129–138

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Cox RE, Burlingame AI, Wilson DM, Eglinton GJ (1973) Botryococcene- a tetramethylated acyclic triterpenoid of algal origin. Chem Commun

    Google Scholar 

  • Douglas AG, Eglinton G, Maxwell JR (1969) The hydrocarbons of coorongite. Geochim Cosmochim Acta 33:569–577

    Article  CAS  Google Scholar 

  • Drew KM, Ross R (1964) Some generic names in Bangiophycidae. Taxon 14:93–98

    Article  Google Scholar 

  • Fehler SWG, Light RJ (1970) Biosynthesis of hydrocarbons in Anabaena variabilis. Incorportion of [methyl- 14C]- and [methyl- 2H 3]-methionine. Biochemistry 9:418–428

    Article  CAS  PubMed  Google Scholar 

  • Gelpi E, Schneider H, Mann J, Oro J (1970) Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry 9:603–608

    Article  CAS  Google Scholar 

  • Gschwend PM, Macfarlane JK, Newman KA (1985) Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science 227:1033–1035

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Poulter CD (1989) Tetramethylsqualene, a triterpene from Botryococcus braunii var. Showa. Phytochemistry 28:1467–1470

    Article  CAS  Google Scholar 

  • Komárek J, Marvan P (1992) Morphological differences in natural populations of the genus Botryococcus (Chlorophyceae). Arch Protistenkd 141:65–100

    Article  Google Scholar 

  • Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014

    Article  CAS  Google Scholar 

  • Largeau C, Casadevall E, Berkaloff C, Dhamliencourt P (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1048

    Article  CAS  Google Scholar 

  • Lee RF, Loeblich AR (1971) Distribution of 21: 6 hydrocarbon and its relationship to 22: 6 fatty acid in algae. Phytochemistry 10:593–598

    Article  CAS  Google Scholar 

  • Li Y, Qin JG (2005) Comparison of growth and lipid content in three Botryococcus braunii strains. J Appl Physiol 17:551–556

    CAS  Google Scholar 

  • Lupi FM, Fernandes HML, Tomme MM, Sa Correia I, Novais JM (1994) Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii. Enzym Microb Technol 6:546–558

    Article  Google Scholar 

  • Maxwell JR, Douglas AG, Eglinton G, McCormick A (1968) The Botryococcenes-hydrocarbons of novel structure from the alga Botryococcus braunii, Kützing. Phytochemistry 7:2157–2171

    Article  CAS  Google Scholar 

  • McKirdy DM, Cox RE, Volkman JK, Howell VJ (1986) Botryococcane in a new class of Australian non-marine crude oils. Nature 320:57–59

    Article  CAS  Google Scholar 

  • McMurry J (2000) Organic chemistry. Brooks/Cole, Pacific Grove

    Google Scholar 

  • Metzger P, Casadevall E (1987) Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green-alga Botryococcus braunii. Tetrahedron Lett 28:3931–3934

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (1999) Chemicals of Botryococcus braunii. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 205–260

    Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  PubMed  Google Scholar 

  • Metzger P, Berkaloff C, Couté A, Casadevall E (1985) Alkadieneand botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312

    Article  CAS  Google Scholar 

  • Metzger P, Casadevall E, Coute A (1988) Botryococcene distribution in strains of green alga Botryococcus braunii. Phytochemistry 27:1383–1988

    Article  CAS  Google Scholar 

  • Metzger P, Allard B, Casadevall E, Berkaloff C, Coute A (1990) Structure and chemistry of a new chemical race of Botryococcus braunii (Chlorophyceae) that produces lycopadiene, a tetraterpenoid hydrocarbon. J Phycol 26:258–266

    Article  CAS  Google Scholar 

  • Metzger P, Villarrealrosales E, Casadevall E (1991) Methyl-branched fatty aldehydes and fatty-acids in Botryococcus braunii. Phytochemistry 30:185–191

    Article  CAS  Google Scholar 

  • Nevenzel JC (1989) Biogenic hydrocarbons of marine organisms. In: Ackman RG (ed) Marine biogenic lipids, fats, and oils. CRC Press, Boca Baton, pp 3–71

    Google Scholar 

  • Nishimoto S (1974) Chemotaxonomic study of n-alkanes in aquatic plants. J Sci Hiroshima Univ Ser A Phys Chem 38:159–168

    CAS  Google Scholar 

  • Okada S, Devarenne TP, Chappell J (2000) Molecular characterization of squalene synthase from the green microalga Botryococcus braunii, race B. Arch Biochem Biophys 373:307–317

    Article  CAS  PubMed  Google Scholar 

  • Patterson GW (1967) The effect of culture conditions on the hydrocarbon content of Chlorella vulgaris. J Phycol 3:22–28

    Article  CAS  PubMed  Google Scholar 

  • Perry GJ, Gillan FT, Johns RB (1978) Lipid composition of a prochlorophyte. J Phycol 14:369–371

    Article  CAS  Google Scholar 

  • Qin JG (2005) Bio-hydrocarbons from algae: impacts of temperature, light and salinity on algae growth. Rural Industries Research and Development Corporation

    Google Scholar 

  • Qin JG, Li Y (2006) Optimization of the growth environment of Botryococcus braunii strain CHN 357. J Freshw Ecol 21:169–176

    Article  CAS  Google Scholar 

  • Rezanka T, Zahradnik J, Podojil M (1977) Hydrocarbons in green and blue-green algae. Folia Microbiol (Prague) 27:450–454

    Article  Google Scholar 

  • Senousy HH, Beakes GW, Hack E (2004) Phylogenetic placement of Botryococcus braunii (Trebouxiophyceae) and Botryococcus sudeticus isolate UTEX 2629 (Chlorophyceae). J Phycol 40:412–423

    Article  CAS  Google Scholar 

  • Smith GM (1950) The fresh-water algae of the United States. McGraw-Hill, New York

    Google Scholar 

  • Wake LV, Hillen LW (1981) Nature and hydrocarbon content of blooms of the alga Botryococcus braunii occurring in Australian freshwater lakes. Aust J Mar Freshwat Res 32:353–367

    Article  CAS  Google Scholar 

  • Wolf FR, Nanomura AM, Bassham JA (1985) Growth and branched hydrocarbon production in a strain of Botryococcus braunii. J Phycol 21:388–398

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Qin, J.G. (2017). Hydrocarbons from Algae. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50436-0_209

Download citation

Publish with us

Policies and ethics