Skip to main content

Abstract

Microbe-mediated anaerobic digestion (AD) occurs in a wide range of natural and man-made habitats and results in the production of biogas . In order to use biogas as a transport fuel, it must undergo a costly conversion to biomethane (>95% methane). Biomethane can replace natural gas as a clean fuel in vehicles as it produces fewer harmful emissions than petrol, diesel, or LPG in spite of the considerable improvements made to these fuels in recent years. In addition to producing fewer emissions, biomethane poses fewer environmental hazards than other fuels. In the event of an accident, biomethane dissipates into the atmosphere rather than spilling onto the ground – a major benefit for waterways and wildlife. The main barrier for the use of biomethane as a transport fuel is the requirement for additional infrastructure such as refueling stations. This restriction does not apply to the use of biogas or biomethane for static energy generation such as electricity and heat production. Currently, biomethane from large AD plants can be injected directly into natural gas distribution networks. While AD has been extensively utilized in wastewater treatment , industrial-scale application of this technology to solid organic wastes has only recently begun to be adopted, probably due to a number of not fully defined and poorly understood parameters that influence the efficiency and robustness of microbes in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Awobusuyi DT (2016) Concentration of ammonium from dilute aqueous solutions using commercially available reverse osmosis membranes, University of Ottawa

    Google Scholar 

  • Bo-Feng C, Jian-Guo L, Qing-Xian G, Xiao-Qin N, Dong C, Lan-Cui L, Ying Z, Zhan-Sheng Z (2014) Estimation of methane emissions from municipal solid waste landfills in China based on point emission sources. Adv Clim Chang Res 5:81–91

    Article  Google Scholar 

  • Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I (2016) Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels 9:1–17

    Article  Google Scholar 

  • Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438

    Article  CAS  PubMed  Google Scholar 

  • Gerardi MH (2003) The Microbiology of Anaerobic Digesters. J Wiley & Sons, Inc. ISBN: 9780471206934

    Google Scholar 

  • He S, Malfatti SA, McFarland JW, Anderson FE, Pati A, Huntemann M, Tremblay J, del Rio TG, Waldrop MP, Windham-Myers L, and Tringe SG (2015) Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. mBio, 6: e00066-15

    Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484

    Article  CAS  PubMed  Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management. In: Urban development series; knowledge papers no. 15, Pub. The World Bank, Washinton, DC. USA.

    Google Scholar 

  • Imachi H, Sakai S, Sekiguchi Y, Hanada S, Kamagata Y, Ohashi A, Harada H (2008) Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 58:294–301

    Article  CAS  PubMed  Google Scholar 

  • Jones WJ, Whitman WB, Fields RD, Wolfe RS (1983) Growth and plating efficiency of methanococci on agar media. Appl Environ Microbiol 46:220–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Körner I, Braukmeier J, Herrenklage J, Leikam K, Ritzkowski M, Schlegelmilch M, Stegmann R (2003) Investigation and optimization of composting processes – test systems and practical examples. Waste Manag 23:17–26

    Article  PubMed  Google Scholar 

  • Krich K, Augenstein D, Batmale JP, Beneman J, Rutledge B, Salour D (2005) Biomethane from dairy waste, a sourcebook for the production and use of renewable natural gas. Pub. California Institute for Energy and Environment

    Google Scholar 

  • Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67:3–28

    Article  CAS  PubMed  Google Scholar 

  • Mata-Alvarez J, Macé S, Llabrés P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16

    Article  CAS  Google Scholar 

  • Montalbo-Lomboy M, Khanal SK, van Leeuwen J, Raj Raman D, Dunn L Jr, Grewell D (2010) Ultrasonic pretreatment of corn slurry for saccharification: a comparison of batch and continuous systems. Ultrason Sonochem 17:939–946

    Article  CAS  PubMed  Google Scholar 

  • Montgomery LFR, Bochmann G (2014) Pretreatment of feedstock for enhanced biogas production. IEA Bioenergy: 1–20

    Google Scholar 

  • Mor S, Ravindra K, De Visscher A, Dahiya RP, Chandra A (2006) Municipal solid waste characterization and its assessment for potential methane generation: a case study. Sci Total Environ 371:1–10

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Yamamoto H, Kamagata Y, Hatsu M, Takamizawa K (2000) Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site. Int J Syst Evol Microbiol 50:1723–1729

    Article  CAS  PubMed  Google Scholar 

  • Pimentel M, Gunsalus RP,Rao SSC, Zhang H (2012) Methanogens in human health and disease. AJG Supplements 1:28–33

    Google Scholar 

  • Powell JT, Townsend TG, Zimmerman JB (2016) Estimates of solid waste disposal rates and reduction targets for landfill gas emissions. Nature Climate Change 6:162–165.

    Google Scholar 

  • Puyuelo B, Ponsá S, Gea T, Sánchez A (2011) Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere 85:653–659

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal R, Massé DI, Singh G (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143:632–641

    Article  CAS  PubMed  Google Scholar 

  • Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380

    Article  CAS  Google Scholar 

  • Savant DV, Shouche YS, Prakash S, Ranade DR (2002) Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52:1081–1087

    CAS  PubMed  Google Scholar 

  • Scheehle (2006) Anthropogenic non-CO2 greenhouse gas emissions: 1990–2020. National Service Center for Environmental Publications, Pub. US Environmental Protection Agency

    Google Scholar 

  • Schink B (2008) Energetic aspects of methanogenic feeding webs. Bioenergy (Wall, J. el al., eds, ASM Press, Washington DC, USA), pp. 171–178.

    Google Scholar 

  • Show K-Y, Wang Y, Foong S-F, Tay J-H (2004) Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors. Water Res 38:2293–2304

    Article  CAS  Google Scholar 

  • Singh S, Kumar S, Jain MC, Kumar D (2001) Increased biogas production using microbial stimulants. Bioresour Technol 78:313–316

    Article  CAS  PubMed  Google Scholar 

  • Stams AJM, Elferink O, Stefanie JWH (1997) Understanding and advancing wastewater treatment. Curr Opin Biotechnol 8:328–334

    Article  CAS  PubMed  Google Scholar 

  • Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Pühler A, Schlüter A (2015) Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels 8:1–18

    Article  Google Scholar 

  • Thanh PM, Ketheesan B, Yan Z, Stuckey D (2016) Trace metal speciation and bioavailability in anaerobic digestion: a review. Biotechnol Adv 34:122–136

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. 6:579–591

    Google Scholar 

  • The European Biogas Report. (2015) Pub. The European Biogas Association

    Google Scholar 

  • Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940

    Article  CAS  PubMed  Google Scholar 

  • Weimer PJ (1998) Manipulating ruminal fermentation: a microbial ecological perspective. J Anim Sci 76:3114–3122

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Ankwanda E, Wolfe RS (1982) Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol 149:852–863

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. J. Chong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Robson, J., Alessi, A., Bochiwal, C., O’Malley, C., Chong, J.P.J. (2017). Biomethane as an Energy Source. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50436-0_208

Download citation

Publish with us

Policies and ethics