Skip to main content

Plant-Endophyte Partnerships to Assist Petroleum Hydrocarbon Remediation

  • Reference work entry
  • First Online:
  • 506 Accesses

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Petroleum hydrocarbons (PHs) are the most widespread organic contaminants in soil and groundwater worldwide. The financial, environmental, and health impacts of the contaminants are considerable. Regulations require the remediation of contaminated sites and encourage the use of biological methods such as phytoremediation, whereby plants and their associated microorganisms are used. Whilst being cheap and sustainable, there are few elements like the efficiency and predictability that has retarded its implementation into commercial-wide applications. Endophytic bacteria living inside plant tissues are fundamental to plant health and many of them can break-down contaminants taken-up by the host, thereby reducing phytotoxicity. Sequencing of genomic DNA of pure strains and endophytic microbial communities provides critical new opportunities for phytoremediation applications to restore PH contaminated soils. In this chapter, we discuss on a number of beneficial effects of plant-endophyte partnerships, and highlight how new insights from genomics and metagenomics can assist soil remediation to enhance plant growth and ecosystem services of reclamated soil.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    Article  CAS  PubMed  Google Scholar 

  • Aguilera F, Méndez J, Pásaro E, Laffon B (2010) Review on the effects of exposure to spilled oils on human health. J Appl Toxicol 30:291–301

    CAS  PubMed  Google Scholar 

  • Alves GC, Videira SS, Urquiaga S, Reis VM (2014) Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants. Plant Soil 387:307–321

    Article  CAS  Google Scholar 

  • Andria V, Reichenauer TG, Sessitsch A (2009) Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ Pollut 157:3347–3350

    Article  CAS  PubMed  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Arslan M, Imran A, Khan QM, Afzal M (2015) Plant-bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-015-4935-3

    Article  PubMed  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Asghar H, Zahir Z, Arshad M, Khaliq A (2002) Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biol Fertil Soils 35:231–237

    Article  CAS  Google Scholar 

  • Asghar H, Zahir Z, Arshad M (2004) Screening rhizobacteria for improving the growth, yield, and oil content of canola (Brassica napus L.). Crop Pasture Sci 55:187–194

    Article  Google Scholar 

  • Bacon CW, White JF (1994) Stains, media and procedures for analyzing endophytes. In: Biotechnology of endophytic fungi of grasses. CRC PRess, Boca Raton, pp 47–56

    Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker PA, Pieterse CM, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  PubMed  Google Scholar 

  • Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25:2397–2406

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Beattie GA, Lindow SE (1999) Bacterial colonization of leaves: a spectrum of strategies. Phytopathology 89:353–359

    Article  CAS  PubMed  Google Scholar 

  • Beckers B, Op De Beeck M, Weyens N, Van Acker R, Van Montagu M, Boerjan W, Vangronsveld J (2016) Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proc Natl Acad Sci U S A 113:2312–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Bell TH, Yergeau E, Martineau C, Juck D, Whyte LG, Greer CW (2011) Identification of nitrogen-incorporating bacteria in petroleum-contaminated arctic soils by using [15N]DNA-based stable isotope probing and pyrosequencing. Appl Environ Microbiol 77:4163–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell TH, Yergeau E, F Juck D, G Whyte L, W Greer C (2013a) Alteration of microbial community structure affects diesel biodegradation in an Arctic soil. FEMS Microbiol Ecol 85:51–61

    Article  PubMed  Google Scholar 

  • Bell TH, Yergeau E, Maynard C, Juck D, Whyte LG, Greer CW (2013b) Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME J 7:1200–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell TH, Joly S, Pitre FE, Yergeau E (2014a) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32:271–280

    Article  CAS  PubMed  Google Scholar 

  • Bell TH, El-Din Hassan S, Lauron-Moreau A, Al-Otaibi F, Hijri M, Yergeau E, St-Arnaud M (2014b) Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny. ISME J 8:331–343

    Article  CAS  PubMed  Google Scholar 

  • Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800

    Article  CAS  PubMed  Google Scholar 

  • Beraha L, Wisniewski V, Garber E (1983) Avirulence and reduced extracellular enzyme activity in Geotrichum candidum. Bot Gaz 144:461–465

    Article  CAS  Google Scholar 

  • Bertagnolli B, Dal Soglio F, Sinclair J (1996) Extracellular enzyme profiles of the fungal pathogen Rhizoctonia solani isolate 2B-12 and of two antagonists, Bacillus megaterium strain B153-2-2 and Trichoderma harzianum isolate Th008. I. Possible correlations with inhibition of growth and biocontrol. Physiol Mol Plant Pathol 48:145–160

    Article  CAS  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blinkov EA, Tsavkelova EA, Selitskaya OV (2014) Auxin production by the Klebsiella planticola strain TSKhA-91 and its effect on development of cucumber (Cucumis sativus L.) seeds. Microbiology 83:531–538

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Wijfjes AH, Lamers GE, Stuurman N, Lugtenberg BJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact 13:1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Bruto M, Prigent-Combaret C, Muller D, Moenne-Loccoz Y (2014) Analysis of genes contributing to plant-beneficial functions in plant growth-promoting Rhizobacteria and related Proteobacteria. Sci Rep 4:6261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Burken JG (2003) Uptake and metabolism of organic compounds:green liver concept. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New Jersey, pp 59–83

    Chapter  Google Scholar 

  • Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345

    Article  CAS  PubMed  Google Scholar 

  • Cardinale M (2014) Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy. Front Microbiol 5:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Chikere CB, Okpokwasili GC, Chikere BO (2011) Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech 1:117–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Conrath U, Pieterse CM, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    Article  CAS  PubMed  Google Scholar 

  • Cook RL, Hesterberg D (2013) Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. Int J Phytoremediation 15:844–860

    Article  CAS  PubMed  Google Scholar 

  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moenne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48:505–512

    Article  CAS  PubMed  Google Scholar 

  • Croes S, Weyens N, Janssen J, Vercampt H, Colpaert JV, Carleer R, Vangronsveld J (2013) Bacterial communities associated with Brassica napus L. grown on trace element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison. Microb Biotechnol 6:371–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley DE, Reid CP, Szaniszlo PJ (1988) Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol 87:680–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C (2004) Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 49:469–479

    Article  CAS  PubMed  Google Scholar 

  • De Bary A (1866) Morphologie und Physiologie Pilze, Flechten, und myxomyceten. W. Engelmann, Leipzig

    Book  Google Scholar 

  • De Bruijn F (2015) Biological nitrogen fixation. In: Lugtenberg B (ed) Principles of plant-microbe interactions Microbes for sustainable agriculture. Springer International Publishing, Switzerland, pp 215–225

    Google Scholar 

  • de Garcia Salamone IE, Hynes RK, Nelson LM (2006) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 173–195

    Google Scholar 

  • De Souza JT, De Boer M, De Waard P, Van Beek TA, Raaijmakers JM (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delvasto P, Ballester A, Muñoz J, González F, Blázquez M, Igual J, Valverde A, García-Balboa C (2009) Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Miner Eng 22:1–9

    Article  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Domenech J, Ramos S, Probanza A, Lucas G, Gutierrez M (2007) Elicitation of systemic resistance and growth promotion of Arabidopsis thaliana by PGPRs from Nicotiana glauca: a study of the putative induction pathway. Plant Soil 290:43–50

    Article  CAS  Google Scholar 

  • Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33

    Article  CAS  Google Scholar 

  • Drogue B, Doré H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C (2012) Which specificity in cooperation between phytostimulating rhizobacteria and plants? Res Microbiol 163:500–510

    Article  PubMed  Google Scholar 

  • Dzantor EK (2007) Phytoremediation: the state of rhizosphere ‘engineering’ for accelerated rhizodegradation of xenobiotic contaminants. J Chem Tech Biot 82:228–232

    Article  CAS  Google Scholar 

  • Eevers N, Gielen M, Sánchez‐López A, Jaspers S, White J, Vangronsveld J, Weyens N (2015) Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. J Microbial Biotechnol 8:707–715

    Article  CAS  Google Scholar 

  • Fan B, Borriss R, Bleiss W, Wu X (2012) Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J Microbiol 50:38–44

    Article  PubMed  Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206

    Article  PubMed  PubMed Central  Google Scholar 

  • Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452

    Article  PubMed  CAS  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1, 3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  CAS  Google Scholar 

  • Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the Era of climate change. Springer, New York, pp 395–412

    Chapter  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci: Int J Exp Plant Biol 176:20–30

    Article  CAS  Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G et al (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118

    Article  CAS  PubMed  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson AW, Fitch MW, Burken JG, Wood TK (2007) Transport and survival of GFP-tagged root-colonizing microbes: implications for rhizodegradation. Eur J Soil Biol 43:224–232

    Article  CAS  Google Scholar 

  • Gkorezis P, Rineau F, Van Hamme J, Franzetti A, Daghio M, Thijs S, Weyens N, Vangronsveld J (2015) Draft genome sequence of acinetobacter oleivorans PF1, a diesel-degrading and plant-growth-promoting endophytic strain isolated from poplar trees growing on a diesel-contaminated plume. Genome Announc 3:e01430

    PubMed  PubMed Central  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:963401

    Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Govindasamy V, Franco CMM, Gupta VVSR (2014) Endophytic actinobacteria: diversity and ecology. In Advances in endophytic research (pp. 27–59). Springer India

    Google Scholar 

  • Gray E, Smith D (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gutiérrez‐Mañero FJ, Ramos‐Solano B, Probanza A, Mehouachi JR, Tadeo F, Talon M (2001) The plant‐growth‐promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonising Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • Hoster F, Schmitz JE, Daniel R (2005) Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Appl Microbiol Biotechnol 66:434–442

    Article  CAS  PubMed  Google Scholar 

  • Ijaz A, Imran A, Anwar ul Haq M, Khan QM, Afzal M (2015) Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil 405:179–195

    Article  CAS  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085

    Article  CAS  PubMed  Google Scholar 

  • Jones MD, Crandell DW, Singleton DR, Aitken MD (2011) Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 13:2623–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaimi E, Mukaidani T, Tamaki M (2007) Screening of twelve plant species for phytoremediation of petroleum hydrocarbon-contaminated soil. Plant Prot Sci 10:211–218

    Article  CAS  Google Scholar 

  • Kamath R, Rentz J, Schnoor J, Alvarez P (2004) Phytoremediation of hydrocarbon-contaminated soils: principles and applications. Stud Surf Sci Catal 151:447–478

    Article  CAS  Google Scholar 

  • Kanaly R, Harayama S (2010) Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. J Microbial Biotechnol 3:136–164

    Article  CAS  Google Scholar 

  • Kästner M (2008) Degradation of aromatic and polyaromatic compounds. In: Biotechnology set. Wiley-VCH Verlag GmbH, Weinheim, pp 211–239

    Chapter  Google Scholar 

  • Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci U S A 111:13715–13720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  CAS  PubMed  Google Scholar 

  • Kim BS, Moon SS, Hwang BK (1999) Isolation, identification, and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Can J Bot 77:850–858

    CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980a) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980b) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kluepfel DA (1993) The behavior and tracking of bacteria in the rhizosphere. Annu Rev Phytopathol 31:441–472

    Article  Google Scholar 

  • Kogel KH, Franken P, Huckelhoven R (2006) Endophyte or parasite – what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD+−dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48:772–786

    Article  CAS  PubMed  Google Scholar 

  • Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Kuz’mina LY, Dodd IC, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem: PPB/Soc Fr Physiol Veg 83:285–291

    Article  CAS  Google Scholar 

  • Kuiper I, Kravchenko LV, Bloemberg GV, Lugtenberg BJJ (2002) Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphtalene degradation, effectively utilizes root exudate components. Mol Plant-Microbe Interact 15:734–741

    Article  CAS  PubMed  Google Scholar 

  • Kuklinsky‐Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani‐Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean‐associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Kulik N, Goi A, Trapido M, Tuhkanen T (2006) Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J Environ Manage 78:382–391

    Article  CAS  PubMed  Google Scholar 

  • Ladha JK, Barraquio WL, Watanabe I (1983) Isolation and identification of nitrogen-fixing Enterobacter cloacae and Klebsiella planticola associated with rice plants. Can J Microbiol 29:1301–1308

    Article  Google Scholar 

  • Ladha JK, Pathak H, Krupnik TJ, Six J, van Kessel C (2005) Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. In: Advances in Agronomy, vol 87. Academic, pp 85–156. Elsevier

    Google Scholar 

  • Lagendijk EL, Validov S, Lamers GE, de Weert S, Bloemberg GV (2010) Genetic tools for tagging Gram-negative bacteria with mCherry for visualization in vitro and in natural habitats, biofilm and pathogenicity studies. FEMS Microbiol Lett 305:81–90

    Article  CAS  PubMed  Google Scholar 

  • Leveau JH, Lindow SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci U S A 98:3446–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, Van Der Lelie D (2002a) Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. Int J Phytoremediation 4:101–115

    Article  CAS  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, von der Lelie D (2002b) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Loper JE, Hassan KA, Mavrodi DV et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant-Microbe Interact 20:207–217

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Chin AWTF, Bloemberg GV (2002) Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383

    Article  CAS  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maestri E, Marmiroli N (2011) Transgenic plants for phytoremediation. Int J Phytoremediation 13(Suppl 1):264–279

    Article  PubMed  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 227:115–126

    Article  CAS  Google Scholar 

  • Martin KE, Ozsvar J, Coleman NV (2014) SmoXYB1C1Z of Mycobacterium sp. strain NBB4: a soluble methane monooxygenase (sMMO)-like enzyme, active on C2 to C4 alkanes and alkenes. Appl Environ Microbiol 80:5801–5806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mason OU, Scott NM, Gonzalez A et al (2014) Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J 8:1464–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, Dvd L (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–188

    Article  CAS  PubMed  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds ofnicotiana tabacumcan reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    Article  CAS  Google Scholar 

  • McCully ME (2001) Niches for bacterial endophytes in crop plants: a plant biologist’s view. Funct Plant Biol 28:983–990

    Article  Google Scholar 

  • Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47:110–117

    Article  CAS  PubMed  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13:638–649

    Google Scholar 

  • Moldes AB, Paradelo R, Rubinos D, Devesa-Rey R, Cruz JM, Barral MT (2011) Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus. J Agric Food Chem 59:9443–9447

    Article  CAS  PubMed  Google Scholar 

  • Murray JD (2011) Invasion by invitation: rhizobial infection in legumes. Mol Plant Microbe Interact 24:631–639

    Article  CAS  PubMed  Google Scholar 

  • Nakayama N, Smith RS, Mandel T, Robinson S, Kimura S, Boudaoud A, Kuhlemeier C (2012) Mechanical regulation of auxin-mediated growth. Curr Biol 22:1468–1476

    Article  CAS  PubMed  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  PubMed  Google Scholar 

  • Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8

    Article  CAS  PubMed  Google Scholar 

  • Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, Kanigan T, Lewis K, Epstein SS (2010) Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76:2445–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen TH, Sorensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol 69:861–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palleroni NJ, Pieper DH, Moore ERB (2010) Microbiology of hydrocarbon-degrading Pseudomonas. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1787–1798

    Chapter  Google Scholar 

  • Panagos P, Van Liedekerke M, Yigini Y, Montanarella L (2013) Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Public Health 2013:158764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey P, Kang S, Maheshwari D (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:177–180

    CAS  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Pirttilä AM, Frank AC (2011) Endophytes of forest trees, vol 80. Springer Netherlands

    Google Scholar 

  • Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560

    Article  CAS  PubMed  Google Scholar 

  • Poole K (2012) Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol 20:227–234

    Article  CAS  PubMed  Google Scholar 

  • Porteous Moore F, Barac T, Borremans B, Oeyen L, Vangronsveld J, van der Lelie D, Campbell CD, Moore ER (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Radzki W, Manero FG, Algar E, García JL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7:602–609

    Article  CAS  PubMed  Google Scholar 

  • Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224

    Article  Google Scholar 

  • Reichenauer TG, Germida JJ (2008) Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem 1:708–717

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Remans R, Beebe S, Blair M et al (2007) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161

    Article  CAS  Google Scholar 

  • Roca A, Pizarro-Tobias P, Udaondo Z, Fernandez M, Matilla MA, Molina-Henares MA, Molina L, Segura A, Duque E, Ramos JL (2013) Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD-1. Environ Microbiol 15:780–794

    Article  CAS  PubMed  Google Scholar 

  • Rodrıguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rodríguez-Trigo G, Zock J-P, Pozo-Rodríguez F et al (2010) Health changes in fishermen 2 years after clean-up of the prestige oil spill. Ann Intern Med 153:489–498

    Article  PubMed  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rylott EL (2014) Endophyte consortia for xenobiotic phytoremediation: the root to success? Plant Soil 385:389–394

    Article  CAS  Google Scholar 

  • Ryu C-M, Hu C-H, Reddy MS, Kloepper JW (2003a) Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol 160:413–420

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003b) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu C-M, Hu C-H, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292

    Article  CAS  Google Scholar 

  • Sajjad Mirza M, Ahmad W, Latif F, Haurat J, Bally R, Normand P, Malik KA (2001) Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237:47–54

    Article  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Santaella C, Schue M, Berge O, Heulin T, Achouak W (2008) The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ Microbiol 10:2150–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheublin TR, Deusch S, Moreno-Forero SK, Muller JA, van der Meer JR, Leveau JH (2014) Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds. Environ Microbiol 16:2212–2225

    Article  CAS  PubMed  Google Scholar 

  • Schlaeppi K, Dombrowski N, Oter RG, Ver Loren van Themaat E, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci U S A 111:585–592

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes, vol 9. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

  • Schulz BJE, Boyle CJC, Sieber TN (2006) Microbial root endophytes. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Ramos JL (2013) Plant-bacteria interactions in the removal of pollutants. Curr Opin Biotechnol 24:467–473

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Rodríguez-Conde S, Ramos C, Ramos JL (2009) Bacterial responses and interactions with plants during rhizoremediation. Microb Biotechnol 2:452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Hardoim P, Doring J et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A et al (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skoog F, Armstrong DJ (1970) Cytokinins. Annu Rev Plant Physiol 21:359–384

    Article  CAS  Google Scholar 

  • Sloan SS, Lebeis SL (2015) Exercising influence: distinct biotic interactions shape root microbiomes. Curr Opin Plant Biol 26:32–36

    Article  PubMed  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S (2015) Plant hormones produced by microbes. In: Lugtenberg B (ed) Principles of plant-microbe interactions Microbes for sustainable agriculture. Springer International Publishing, Switzerland, pp 247–256

    Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Chapter 7: plant growth-promoting actions of Rhizobacteria. In: Loon LCV (ed) Advances in botanical research, vol 51. Academic, pp 283–320

    Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su C, Lei L, Duan Y, Zhang KQ, Yang J (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Syranidou E, Christofilopoulos S, Gkavrou G, Thijs S, Weyens N, Vangronsveld J, Kalogerakis N (2016) Exploitation of endophytic bacteria to enhance the phytoremediation potential of the wetland helophyte Juncus acutus. Front Microbiol 07:1016

    Article  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  CAS  PubMed  Google Scholar 

  • Taghavi S, van der Lelie D, Hoffman A, Zhang YB, Walla MD, Vangronsveld J, Newman L, Monchy S (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6:e1000943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka H, Watanabe T (1995) Glucanases and chitinases of Bacillus circulans WL-12. J Ind Microbiol 14:478–483

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Wang M, Wang F, Sun Q, Zhou Q (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci (China) 23:845–851

    Article  CAS  Google Scholar 

  • Thijs S, Weyens N, Sillen W, Gkorezis P, Carleer R, Vangronsveld J (2014a) Potential for plant growth promotion by a consortium of stress-tolerant 2,4-dinitrotoluene-degrading bacteria: isolation and characterization of a military soil. Microb Biotechnol 7:294–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thijs S, Van Dillewijn P, Sillen W et al (2014b) Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant Soil 385:15–36

    Article  CAS  Google Scholar 

  • Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J (2016) Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 7:341

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomassin-Lacroix EJ, Eriksson M, Reimer KJ, Mohn WW (2002) Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl Microbiol Biotechnol 59:551–556

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity – magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  CAS  PubMed  Google Scholar 

  • Truyens S, Beckers B, Thijs S, Weyens N, Cuypers A, Vangronsveld J (2015a) The effects of the growth substrate on cultivable and total endophytic assemblages of Arabidopsis thaliana. Plant Soil 405(1-2):325–336

    Article  CAS  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015b) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Article  Google Scholar 

  • Truyens S, Beckers B, Thijs S, Weyens N, Cuypers A, Vangronsveld J (2016) Cadmium-induced and transgenerational changes in the cultivable and total seed endophytic community of Arabidopsis thaliana. Plant Biol (Stuttg) 18(3):376–381

    Article  PubMed  CAS  Google Scholar 

  • Uhlik O, Wald J, Strejcek M, Musilova L, Ridl J, Hroudova M, Vlcek C, Cardenas E, Mackova M, Macek T (2012) Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS One 7:e40653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630

    Article  PubMed  Google Scholar 

  • Van der Lelie D, Taghavi S, Monchy S et al (2009) Poplar and its bacterial endophytes: coexistence and harmony. Crit Rev Plant Sci 28:346–358

    Article  CAS  Google Scholar 

  • van Elsas JD, Turner S, Bailey MJ (2003) Horizontal gene transfer in the phytosphere. New Phytol 157:525–537

    Article  PubMed  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res Int 16:765–794

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang W, Lai Q, Shao Z (2010a) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil‐degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12:1230–1242

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wang L, Shao Z (2010b) Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen Island. Microb Ecol 60:429–439

    Article  PubMed  Google Scholar 

  • Wasmund K, Burns KA, Kurtböke DI, Bourne DG (2009) Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea, Australia. Appl Environ Microbiol 75:7391–7398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt M, Hugenholtz P, White R, Vinall K (2006) Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). Environ Microbiol 8:871–884

    Article  PubMed  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009a) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009b) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Taghavi S, Barac T, van der Lelie D, Boulet J, Artois T, Carleer R, Vangronsveld J (2009c) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE. Environ Sci Pollut Res Int 16:830–843

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Schellingen K, Beckers B, Janssen J, Ceulemans R, van der Lelie D, Taghavi S, Carleer R, Vangronsveld J (2012) Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. J Soil Sediment 13:176–188

    Article  CAS  Google Scholar 

  • Weyens N, Gielen M, Beckers B, Boulet J, Lelie D, Taghavi S, Carleer R, Vangronsveld J (2014) Bacteria associated with yellow lupine grown on a metal‐contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction. Plant Biol 16:988–996

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils. PLoS One 7:e30058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW (2014) Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J 8:344–358

    Article  CAS  PubMed  Google Scholar 

  • Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A (2010) Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater 184:523–532

    Article  CAS  PubMed  Google Scholar 

  • Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159:2675–2683

    Article  CAS  PubMed  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Ni X, Liu J, Gao Y (2014) Application of endophytic bacteria to reduce persistent organic pollutants contamination in plants. Clean – Soil, Air, Water 42:306–310

    Article  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thijs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thijs, S., Weyens, N., Gkorezis, P., Vangronsveld, J. (2019). Plant-Endophyte Partnerships to Assist Petroleum Hydrocarbon Remediation. In: Steffan, R. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50433-9_9

Download citation

Publish with us

Policies and ethics