Skip to main content

Abstract

Spills of crude and fuel oils from tankers, freighters, pipelines, wells, and storage facilities into the marine environment capture the public’s attention and demand prompt and environmentally sensitive response technologies. Sometimes it is possible to contain the oil with booms and collect it with skimmers or burn it, but in many cases this is impractical, and aiding natural attenuation (largely by microbial biodegradation) is all that can be done without causing further environmental damage. One approach, biostimulation, is to at least partially alleviate those factors slowing the growth of indigenous oil-degrading microbes. While an oil slick is floating or emerging from a wellhead, this can be done by spraying dispersants to encourage the oil to disperse as tiny droplets in the water column, dramatically enhancing the surface area for microbial colonization. If oil reaches a shoreline, biodegradation can be stimulated by carefully delivering biologically available nitrogen and phosphorus to at least partially reduce their limitation on microbial growth. These approaches of biostimulation have been successfully employed many times. The other tactic, bioaugmentation, aiming to add exogenous microbes in the hope that they will “jump-start” biodegradation has yet to be shown to be effective in real oil-spill situations and likely is unnecessary given the ubiquitous distribution of oil-degrading bacteria in the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams J, Sweezey M, Hodson PV (2014) Oil and oil dispersant do not cause synergistic toxicity to fish embryos. Environ Toxicol Chem 33:107–114

    Article  CAS  PubMed  Google Scholar 

  • Aeppli C, Carmichael CA, Nelson RK, Lemkau KL, Graham WM, Redmond MC, Valentine DL, Reddy CM (2012) Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environ Sci Technol 46:8799–8807

    Article  CAS  PubMed  Google Scholar 

  • Aeppli C, Nelson RK, Radović JR, Carmichael CA, Valentine DL, Reddy CM (2014) Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon oil. Environ Sci Technol 48:6726–6734

    Article  CAS  PubMed  Google Scholar 

  • Allen AA, Jaeger D, Mabile NJ, Costanzo D (2011) The use of controlled burning during the Gulf of Mexico Deepwater Horizon MC-252 oil spill response. In: Proceedings of the International oil spill conference paper 194. American Petroleum Institute

    Google Scholar 

  • API (2013) Net environmental benefit analysis for effective oil spill preparedness and response. www.api.org/~/media/Files/EHS/Clean_Water/Oil_Spill_Prevention/NEBA/NEBA-Net-Environmental-Benefit-Analysis-July-2013.pdf. Accessed 1 Aug 2016

  • Arzayus KM, Dickhut RM, Canuel EA (2001) Fate of atmospherically deposited polycyclic aromatic hydrocarbons (PAHs) in Chesapeake Bay. Environ Sci Technol 35:2178–2183

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorus. Biotechnol Bioeng 14:309–318

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM, Bragg JR (2009) Bioremediation of marine oil spills: when and when not – the Exxon Valdez experience. J Microbial Biotechnol 2:213–221

    Article  CAS  Google Scholar 

  • Atlas RM, Bragg JR (2013) Removal of oil from Shorelines: biodegradation and bioremediation. In: Wiens JA (ed) Oil in the environment: legacies and lessons of the Exxon Valdez oil spill. Cambridge University Press, Cambridge, pp 176–200

    Chapter  Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in US history. Environ Sci Technol 45:6709–6715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas RM, Stoeckel DM, Faith SA, Minard-Smith A, Thorn JR, Benotti MJ (2015) Oil biodegradation and oil-degrading microbial populations in marsh sediments impacted by oil from the Deepwater Horizon well blowout. Environ Sci Technol 49:8356–8366

    Article  CAS  PubMed  Google Scholar 

  • Baelum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman HY, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14:2405–2416

    Article  CAS  PubMed  Google Scholar 

  • Bao MT, Wang LN, Sun PY, Cao LX, Zou J, Li YM (2012) Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Mar Pollut Bull 64:1177–1785

    Article  CAS  PubMed  Google Scholar 

  • Barbier CJ (2015) MDL – 2179 oil spill by the oil rig “Deepwater horizon.” http://www.laed.uscourts.gov/sites/default/files/OilSpill/Orders/1152015FindingsPhaseTwo.pdf. Accessed 1 Aug 2016

  • Bartha R, Atlas RM (1976) Biodegradation of oil on water surfaces. US Patent 3,959,127

    Google Scholar 

  • Bejarano AC, Mearns AJ (2015) Improving environmental assessments by integrating Species Sensitivity Distributions into environmental modeling: examples with two hypothetical oil spills. Mar Pollut Bull 93:172–182

    Article  CAS  PubMed  Google Scholar 

  • Belore RC, Trudel K, Mullin JV, Guarino A (2009) Large-scale cold water dispersant effectiveness experiments with Alaskan crude oils and Corexit 9500 and 9527 dispersants. Mar Pollut Bull 58:118–128

    Article  CAS  PubMed  Google Scholar 

  • Betancourt F, Palacio A, Rodriguez A (2005) Effects of the mass transfer process in oil spill. Am J Appl Sci 2:939–946

    Article  CAS  Google Scholar 

  • Bik HM, Halanych KM, Sharma J, Thomas WK (2012) Dramatic shifts in benthic microbial eukaryote communities following the Deepwater Horizon oil spill. PLoS One 7(6):e38550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehm PD, Murray KJ, Cook LL (2016) Distribution and attenuation of polycyclic aromatic hydrocarbons in Gulf of Mexico seawater from the Deepwater Horizon oil accident. Environ Sci Technol 50:584–592

    Article  CAS  PubMed  Google Scholar 

  • Boufadel MC, Bobo AM (2011) Feasibility of high pressure injection of chemicals into the subsurface for the bioremediation of the Exxon Valdez oil. Ground Water Monit Remidiat 31(1):59–67

    Article  CAS  Google Scholar 

  • Boufadel MC, Reeser P, Suidan MT, Wrenn BA, Cheng J, Du X, Huang TL, Venosa AD (1999) Optimal nitrate concentration for the biodegradation of n-heptadecane in a variably-saturated sand column. Environ Technol 20:191–199

    Article  CAS  Google Scholar 

  • Braddock JF, Lindstrom JE, Brown EJ (1995) Distribution of hydrocarbon-degrading microorganisms in sediments from Prince William Sound, Alaska, following the Exxon Valdez spill. Mar Pollut Bull 30:125–132

    Article  CAS  Google Scholar 

  • Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418

    Article  CAS  Google Scholar 

  • Brakstad OG, Nordtug T, Throne-Holst M (2015a) Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Mar Pollut Bull 93:144–152

    Article  CAS  PubMed  Google Scholar 

  • Brakstad OG, Throne-Holst M, Netzer R, Stoeckel DM, Atlas RM (2015b) Microbial communities related to biodegradation of dispersed Macondo oil at low seawater temperature with Norwegian coastal seawater. J Microbial Biotechnol 8:989–998

    Article  CAS  Google Scholar 

  • Brown EJ, Braddock JE (1990) Sheen Screen, a miniaturized most probable number method for enumeration of oil-degrading microorganisms. Appl Environ Microbiol 56:3895–3896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buist I (2003) Window-of-opportunity for in situ burning. Spill Sci Technol Bull 8:341–346

    Article  CAS  Google Scholar 

  • Bushnell LD, Haas HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 41:653–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Camilli R, Reddy CM, Yoerger DR, Van Mooy BA, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP, Maloney JV (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330:201–204

    Article  CAS  PubMed  Google Scholar 

  • Canadian Coast Guard (1995) Oil spill response field guide. Canadian Coast Guard, Ottawa. ISBN 0–660–16112–5.

    Google Scholar 

  • Canevari GP (1985) The effect of crude oil composition on dispersant performance. In: Proceedings of the international oil spill conference. American Petroleum Institute, pp 441–444

    Google Scholar 

  • Cappello S, Caruso G, Zampino D, Monticelli LS, Maimone G, Denaro R, Tripodo B, Troussellier M, Yakimov M, Giuliano L (2007a) Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study. J Appl Microbiol 102:184–194

    Article  CAS  PubMed  Google Scholar 

  • Cappello S, Denaro R, Genovese M, Giuliano L, Yakimov MM (2007b) Predominant growth of Alcanivorax during experiments on “oil spill bioremediation” in mesocosms. Microbiol Res 162:185–190

    Article  CAS  PubMed  Google Scholar 

  • Castro-Jiménez J, Berrojalbiz N, Wollgast J, Dachs J (2012) Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. Environ Pollut 166:40–47

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty AN (1981) Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof. US Patent 4,259,444

    Google Scholar 

  • Chapman H, Purnell K, Law RJ, Kirby MF (2007) The use of chemical dispersants to combat oil spills at sea: a review of practice and research needs in Europe. Mar Pollut Bull 54:827–838

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Lin T, Tang J, Xie Z, Tian C, Li J, Zhang G (2016) Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas. Atmos Environ 141:153–160

    Article  CAS  Google Scholar 

  • Cho Y, Ahmed A, Islam A, Kim S (2015) Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics. Mass Spectrom Rev 34:248–263

    Article  CAS  PubMed  Google Scholar 

  • Colcomb K, Bedborough D, Lunel T, Swannell R, Wood P, Rusin J, Bailey N, Halliwell C, Davies L, Sommerville M, Dobie A, Mitchell D, McDonagh M, Lee K, Shimwell S, Davies B, Harries D (1997) Shoreline cleanup and waste disposal issues during the Sea Empress incident. In: Proceedings of the international oil spill conference. American Petroleum Institute, Washington, DC, pp 195–203

    Google Scholar 

  • Cormack D, Nichols JA (1977) The concentrations of oil in sea water resulting from natural and chemically induced dispersion of oil slicks. In: Proceedings of the international oil spill conference. American Petroleum Institute, pp 381–385

    Google Scholar 

  • Davis JB, Raymond RL (1964) Microbial disposal of oily wastes. US Patent 3,152,983

    Google Scholar 

  • Díez S, Sabaté J, Viñas M, Bayona JM, Solanas AM, Albaigés J (2005) The Prestige oil spill. I. Biodegradation of a heavy fuel oil under simulated conditions. Environ Toxicol Chem 24:2203–2317

    Article  PubMed  Google Scholar 

  • Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, Piceno YM, Reid FC, Stringfellow WT, Tom LM, Hazen TC, Andersen GL (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47:10860–10867

    Article  CAS  PubMed  Google Scholar 

  • Energy Information Agency (2016a) International energy statistics. https://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=5&pid=53&aid=1&cid=regions&syid=2010&eyid=2015&unit=TBPD. Accessed 1 Aug 2016

  • Energy Information Agency (2016b) Crude oil input qualities. https://www.eia.gov/dnav/pet/pet_pnp_crq_a_EPC0_YCG_d_a.htm. Accessed 1 Aug 2016

  • Etkin DS (2001) Analysis of oil spill trends in the US and worldwide. In: Proceedings of the international oil spill conference. American Petroleum Institute, Washington, DC, pp 1291–1300

    Google Scholar 

  • Fernández-Álvarez P, Vila J, Garrido-Fernández JM, Grifoll M, Lema JM (2006) Trials of bioremediation on a beach affected by the heavy oil spill of the Prestige. J Hazard Mater 137:1523–1531

    Article  PubMed  CAS  Google Scholar 

  • Fingas MF (2013) Modeling oil and petroleum evaporation. J Petrol Sci Res 2:104–115

    Google Scholar 

  • Fingas M, Fieldhouse B (2012) Studies on water-in-oil products from crude oils and petroleum products. Mar Pollut Bull 64:272–283

    Article  CAS  PubMed  Google Scholar 

  • Gallagher JJ, Hile HB, Miller JA (2001) The old New Carissa; a study in patience. In: Proceedings of the international oil spill conference. American Petroleum Institute, Washington, DC, pp 85–90

    Google Scholar 

  • Galt JA, Lehr WL, Payton DL (1991) Fate and transport of the Exxon Valdez oil spill. Environ Sci Technol 25:202–209

    Article  CAS  Google Scholar 

  • Gardiner WW, Word JQ, Word JD, Perkins RA, McFarlin KM, Hester BW, Word LS, Ray CM (2013) The acute toxicity of chemically and physically dispersed crude oil to key arctic species under arctic conditions during the open water season. Environ Toxicol Chem 32:2284–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett RM, Pickering IJ, Haith CE, Prince RC (1998) Photooxidation of crude oils. Environ Sci Technol 32:3719–3723

    Article  CAS  Google Scholar 

  • Gatellier C, Plessis A, Gateau P, Durand JP (1983) Dispersant and biodegradant formulations for treating hydrocarbon-polluted waters. US Patent 4,382,873

    Google Scholar 

  • Gautier JC, Sirvins A, Tellier J, Tramier B (1984) Micro-emulsion of nutrient substances. US Patent 4,460,692

    Google Scholar 

  • Goodman R (2003) Tar balls: the end state. Spill Sci Technol Bull 8:117–121

    Article  CAS  Google Scholar 

  • Gupta RS, Fondekar SP, Alagarsamy R (1993) State of oil pollution in the northern Arabian Sea after the 1991 Gulf oil spill. Mar Pollut Bull 27:85–91

    Article  Google Scholar 

  • Hamilton JF, Lewis AC, Bloss C, Wagner V, Henderson AP, Golding BT, Wirtz K, Martin-Reviejo M, Pilling MJ (2003) Measurements of photo-oxidation products from the reaction of a series of alkyl-benzenes with hydroxyl radicals during EXACT using comprehensive gas chromatography. Atmos Chem Phys 3:1999–2014

    Article  CAS  Google Scholar 

  • Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214

    Article  CAS  PubMed  Google Scholar 

  • Harrison OR (1991) An overview of the Exxon Valdez oil spill. In: Proceedings of the international oil spill conference. American Petroleum Institute, Washington, DC, pp 313–320

    Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman H-YN, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208

    CAS  PubMed  Google Scholar 

  • Head IM, Jones DM, Röling WFM (2006) Marine micro-organisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  PubMed  Google Scholar 

  • Hemmer MJ, Barron MG, Greene RM (2011) Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species. Environ Toxicol Chem 30:2244–2252

    Article  CAS  PubMed  Google Scholar 

  • Holden C (1990) Gulf slick a free lunch for bacteria. Science 249:120

    Google Scholar 

  • Hughey CA, Galasso SA, Zumberge JE (2007) Detailed compositional comparison of acidic NSO compounds in biodegraded reservoir and surface crude oils by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Fuel 86:758–768

    Article  CAS  Google Scholar 

  • Husain T (1995) Kuwaiti oil fires; regional environmental perspective. Pergamon Press, UK.

    Chapter  Google Scholar 

  • Incardona JP, Swarts TL, Edmunds RC, Linbo TL, Aquilina-Beck A, Sloan CA, Gardner LD, Block BA, Scholz NL (2013) Exxon Valdez to Deepwater Horizon: comparable toxicity of both crude oils to fish early life stages. Aquat Toxicol 142–143:303–316

    Article  PubMed  CAS  Google Scholar 

  • ITOPF (2016) Oil tanker spill statistics. www.itopf.com/fileadmin/data/Documents/Company_Lit/Oil_Spill_Stats_2016.pdf. Accessed 1 Aug 2016

  • Jernelöv A, Lindén O (1981) Ixtoc I: a case study of the world’s largest oil spill. Ambio 1981:299–306

    Google Scholar 

  • Jiménez N, Viňas M, Sabaté J, Díez S, Bayona JM, Solanas AM, Albaiges J (2006) The Prestige oil spill. 2. Enhanced biodegradation of a heavy fuel oil under field conditions by the use of an oleophilic fertilizer. Environ Sci Technol 40:2578–2585

    Article  PubMed  CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kappell AD, Wei Y, Newton RJ, Van Nostrand JD, Zhou J, McLellan SL, Hristova KR (2014) The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill. Front Microbiol 5:285

    Article  Google Scholar 

  • Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra LM, Yvon-Lewis SA (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331:312–315

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Stanford LA, Rodgers RP, Marshall AG, Walters CC, Qian K, Wenger LM, Mankiewicz P (2005) Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry. Org Geochem 36:1117–1134

    Article  CAS  Google Scholar 

  • Kimes NE, Callaghan AV, Aktas DF, Smith WL, Sunner J, Golding BT, Drozdowska M, Hazen TC, Suflita JM, Morris PJ (2013) Metagenomic analysis and metabolite profiling of deep–sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 4:50

    Article  PubMed  PubMed Central  Google Scholar 

  • King GM, Kostka JE, Hazen TC, Sobecky PA (2015) Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea. Ann Rev Mar Sci 7:377–401

    Article  CAS  PubMed  Google Scholar 

  • Knezevic V, Koren O, Ron EZ, Rosenberg E (2006) Petroleum bioremediation in seawater using guano as the fertilizer. Biorem J 10:83–91

    Article  CAS  Google Scholar 

  • Koons CB, Jahns HO (1992) The fate of oil from the Exxon Valdez: a perspective. Mar Technol Soc J 26:61–69

    Google Scholar 

  • Koren O, Knezevic V, Ron EZ, Rosenberg E (2003) Petroleum pollution bioremediation using water-insoluble uric acid as the nitrogen source. Appl Environ Microbiol 69:6337–6339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl Environ Microbiol 77:7962–7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladousse A, Tramier B (1991) Results of 12 years of research in spilled oil bioremediation: inipol EAP22. In: Proceedings of the international oil spill conference. American Petroleum Institute, Washington, DC, pp 577–582

    Google Scholar 

  • Lafargue E, Le Thiez P (1996) Effect of water washing on light ends compositional heterogeneity. Org Geochem 24:1141–1150

    Article  CAS  Google Scholar 

  • Lamendella R, Strutt S, Borglin S, Chakraborty R, Tas N, Mason OU, Hultman J, Prestat E, Hazen TC, Jansson JK (2014) Assessments of the Deepwater Horizon oil spill impact on Gulf coast microbial communities. Front Microbiol 5:13

    Article  Google Scholar 

  • Law RJ, Kelly C (2004) The impact of the Sea Empress oil spill. Aquat Living Resour 17:389–394

    Article  CAS  Google Scholar 

  • Lee K, Merlin FX (1999) Bioremediation of oil on shore-line environments: development of techniques and guidelines. Pure Appl Chem 71:161–171

    Article  CAS  Google Scholar 

  • Lee K, Boufadel M, Chen B, Foght J, Hodson P, Swanson S, Venosa A (2015) Expert panel report on the behavior and environmental impacts of crude oil released into aqueous environments. Royal Society of Canada, Ottawa. www.rsc.ca/sites/default/files/pdf/OIW%20Report_1.pdf. Accessed 1 Aug 2016

  • Lepain A, Bronchart RDEM (1986) Method for treating oil slicks. US Patent 4,623,468

    Google Scholar 

  • Lessard RR, DeMarco G (2000) The significance of oil spill dispersants. Spill Sci Technol Bull 6:59–68

    Article  CAS  Google Scholar 

  • Leveille TP (1991) The Mega Borg fire and oil spill: a case study. In: Proceedings of the international oil spill conference. American Petroleum Institute, Washington, DC, pp 273–278

    Google Scholar 

  • Levy EM, Lee K (1988) Potential contribution of natural hydrocarbon seepage to benthic productivity and the fisheries of Atlantic Canada. Can J Fish Aquat Sci 45:349–352

    Article  CAS  Google Scholar 

  • Lewis A, Trudel BK, Belore RC, Mullin JV (2010) Large-scale dispersant leaching and effectiveness experiments with oils on calm water. Mar Pollut Bull 60:244–254

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler RG, Daling PS (1983) Dispersion of chemically treated crude oil in Norwegian offshore waters. In: Proceedings of the international oil spill conference. American Petroleum Institute, pp 7–14

    Google Scholar 

  • Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51:341–352

    Article  Google Scholar 

  • Lindstrom JE, Prince RC, Clark JR, Grossman MJ, Yeager TR, Braddock JF, Brown EJ (1991) Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl Environ Microbiol 57:2514–2522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Looper JK, Cotto A, Kim BY, Lee MK, Liles MR, Chadhain SM, Son A (2013) Microbial community analysis of Deepwater Horizon oil-spill impacted sites along the Gulf coast using functional and phylogenetic markers. Evnviron Sci Process Impacts 15:2068–2079

    Article  CAS  Google Scholar 

  • Lu Z, Deng Y, Van Nostrand JD, He Z, Voordeckers J, Zhou A, Lee YJ, Mason OU, Dubinsky EA, Chavarria KL, Tom LM (2012) Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J 6:451–460

    Article  CAS  PubMed  Google Scholar 

  • Lunel T, Rusin J, Halliwell C, Davies L (1997) The net environmental benefit of a successful dispersant operation at the Sea Empress incident. In: Proceedings of the international oil spill conference. American Petroleum Institute, Washington, DC, pp 185–194

    Google Scholar 

  • MacNaughton SJ, Swannell R, Daniel F, Bristow L (2003) Biodegradation of dispersed Forties crude and Alaskan North Slope oils in microcosms under simulated marine conditions. Spill Sci Technol Bull 8:179–186

    Article  CAS  Google Scholar 

  • Mahmoudi N, Porter TM, Zimmerman AR, Fulthorpe RR, Kasozi GN, Silliman BR, Slater GF (2013) Rapid degradation of Deepwater Horizon spilled oil by indigenous microbial communities in Louisiana saltmarsh sediments. Environ Sci Technol 47:13303–13312

    Article  CAS  PubMed  Google Scholar 

  • Maki H, Hirayama N, Hiwatari T, Kohata K, Uchiyama H, Watanabe M, Yamasaki F, Furuki M (2003) Crude oil bioremediation field experiment in the Sea of Japan. Mar Pollut Bull 47:74–77

    Article  CAS  PubMed  Google Scholar 

  • Marine Spill Response Corporation (2016) https://www.oilspillresponse.com/globalassets/technical-library/factsheets/gds_tis_jan-2016.pdf. Accessed 1 Aug 2016

  • Martinelli M, Luise A, Tromellini E, Sauer TC, Neff JM, Douglas GS (1995) The M/C Haven oil spill: environmental assessment of exposure pathways and resource injury. In: Proceedings of the international oil spill conference. American Petroleum Institute, Washington, DC, pp 679–685

    Google Scholar 

  • Maruyama A, Ishiwata H, Kitamura K, Sunamura M, Fujita T, Matsuo M, Higashihara T (2003) Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb Ecol 46:442–453

    Article  CAS  PubMed  Google Scholar 

  • Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Han J, Holman HY, Hultman J, Lamendella R, Mackelprang R (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6:1715–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason OU, Han J, Woyke T, Jansson JK (2014) Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill. Front Microbiol 5:332

    Article  PubMed  PubMed Central  Google Scholar 

  • McAuliffe CD, Johnson JC, Greene SH, Canevari GP, Searl TD (1980) Dispersion and weathering of chemically treated crude oils on the ocean. Environ Sci Technol 14:1509–1518

    Article  CAS  PubMed  Google Scholar 

  • McCay DF, Graham E (2014) Quantifying tradeoffs-net environmental benefits of dispersant use. In: Proceedings of the international oil spill conference. American Petroleum Institute, pp 762–775

    Google Scholar 

  • McFarlin KM, Prince RC, Perkins R, Leigh MB (2014) Biodegradation of dispersed oil in arctic seawater at-1 C. PLoS One 9:e84297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKenna AM, Marshall AG, Rodgers RP (2013) Heavy petroleum composition. 4. Asphaltene compositional space. Energy Fuel 27:1257–1267

    Article  CAS  Google Scholar 

  • McMillen SJ, Requejo AG, Young GN, Davis PS, Cook PD, Kerr JM, Gray NR (1995) Bioremediation potential of crude oil spilled on soil. In: Hinchee RE, Vogel CM, Brockman FJ (eds) Microbial processes for bioremediation. Battelle Press, Columbus, pp 91–99

    Google Scholar 

  • Mills MA, Bonner JS, Page CA, Autenrieth RL (2004) Evaluation of bioremediation strategies of a con-trolled oil release in a wetland. Mar Pollut Bull 49:425–435

    Article  CAS  PubMed  Google Scholar 

  • Nalco (2014) COREXIT® Ingredients. http://www.nalcoesllc.com/nes/1602.htm. Accessed 1 Aug 2016

  • National Research Council (2002) Oil in the Sea III: inputs, fates and effects. National Academy Press, Washington, DC

    Google Scholar 

  • National Research Council (2005) Oil spill dispersants: efficacy and effects. National Academy Press, Washington, DC

    Google Scholar 

  • Nauman SA (1991) Shoreline clean-up: equipment and operations. In: Proceedings of the international oil spill conference. American Petroleum Institute, Washington, DC, pp 141–148

    Google Scholar 

  • Neralla S, Weaver RW (1997) Inoculants and biodegradation of crude oil floating on marsh sediments. Biorem J 1:89–96

    Article  CAS  Google Scholar 

  • Newton RJ, Huse SM, Morrison HG, Peake CS, Sogin ML, McLellan SL (2013) Shifts in the microbial community composition of Gulf Coast beaches following beach oiling. PLoS One 8:e74265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NOAA (2016) Characteristics of response strategies: a guide for spill response planning in marine environments. http://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/resources/characteristics-response-strategies.html

  • Oudot J (2000) Biodégradabilité du fuel de l’Erika/Bio-degradability of the Erika fuel oil. C R Acad Sci III 323:945–950

    Article  CAS  PubMed  Google Scholar 

  • Oudot J, Merlin FX, Pinvidic P (1998) Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Mar Environ Res 45:113–125

    Article  CAS  Google Scholar 

  • Owens EH (1996) Field guide for the protection and cleanup of arctic oiled shorelines. Environment Canada, Prairie and Northern region, Yellowknife NWT, p 213pp

    Google Scholar 

  • Owens EH, Lee K (2003) Interaction of oil and mineral fines on shorelines: review and assessment. Mar Pollut Bull 47:397–405

    Article  CAS  PubMed  Google Scholar 

  • Owens EH, Taylor E, Humphrey B (2008) The persistence and character of stranded oil on coarse-sediment beaches. Mar Pollut Bull 56:14–26

    Article  CAS  PubMed  Google Scholar 

  • Pope G, Gordon KD, Bragg JR (2013) Understanding subsurface contamination using conceptual mathematical models. In: Wiens JA (ed) Oil in the Environment: legacies and Lessons of the Exxon Valdez oil spill. Cambridge University Press, Cambridge, pp 144–175

    Chapter  Google Scholar 

  • Prince RC (1993) Petroleum spill bioremediation in marine environments. Crit Rev Microbiol 19:217–242

    Article  CAS  PubMed  Google Scholar 

  • Prince RC (2010) Eukaryotic hydrocarbon degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 2066–2078

    Google Scholar 

  • Prince RC (2015) Oil spill dispersants: boon or bane? Environ Sci Technol 49:6376–6384

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Atlas RM (2005) Bioremediation of marine oil spills. In: Atlas RM, Philp JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. ASM Press, Washington, DC, pp 269–292

    Chapter  Google Scholar 

  • Prince RC, Bragg JM (1997) Shoreline bioremediation following the Exxon Valdez oil spill in Alaska. Biorem J 1:97–104

    Article  Google Scholar 

  • Prince RC, Butler JD (2014) A protocol for assessing the effectiveness of oil spill dispersants in stimulating the biodegradation of oil. Environ Sci Pollut Res 21:9506–9510

    Article  CAS  Google Scholar 

  • Prince RC, Walters CC (2016) Biodegradation of oil and its implications for source identification. In: Stout SA, Wang Z (eds) Standard handbook oil spill environmental forensics, 2nd edn. Academic Press, Burlington, pp 869–916

    Chapter  Google Scholar 

  • Prince RC, Elmendorf DL, Lute JR, Hsu CS, Haith CE, Senius JD, Dechert GJ, Douglas GS, Butler EL (1994a) 17α(H)-21β(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ Sci Technol 28:142–145

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Clark JR, Lindstrom JE, Butler EL, Brown EJ, Winter G, Grossman MJ, Parrish RR, Bare RE, Braddock JF, Steinhauer WG, Douglas GS, Kennedy JM, Barter PJ, Bragg JR, Harner EJ, Atlas RM (1994b) Bioremediation of the Exxon Valdez oil spill: monitoring safety and efficacy. In: Hinchee RE, Alleman BC, Hoeppel RE, Miller RN (eds) Hydrocarbon remediation. Lewis Publishers, Boca Raton, pp 107–124

    Google Scholar 

  • Prince RC, Bare RE, Garrett RM, Grossman MJ, Haith CE, Keim LG, Lee K, Holtom GJ, Lambert P, Sergy GA, Owens EH, Guénette CC (2003a) Bioremediation of stranded oil on an Arctic shoreline. Spill Sci Technol Bull 8:303–312

    Article  CAS  Google Scholar 

  • Prince RC, Garrett RM, Bare RE, Grossman MJ, Townsend T, Suflita JM, Lee K, Owens EH, Sergy GA, Braddock JF, Lindstrom JE, Lessard RR (2003b) The roles of photooxidation and biodegradation in long-term weathering of crude and heavy fuel oils. Spill Sci Technol Bull 8:145–156

    Article  CAS  Google Scholar 

  • Prince RC, Parkerton TF, Lee C (2007) The primary aerobic biodegradation of gasoline hydrocarbons. Environ Sci Technol 41:3316–3321

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Gramain A, McGenity TJ (2010) Prokaryotic hydrocarbon degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1672–1692

    Google Scholar 

  • Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FC, Nedwed TJ (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90:521–526

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Kelley BA, Butler JD (2016) Three widely-available dispersants substantially increase the biodegradation of otherwise undispersed oil. J Mar Sci 6:2

    Google Scholar 

  • Pritchard PH, Mueller JG, Rogers JC, Kremer FV, Glaser JA (1992) Oil spill bioremediation; experiences, lessons and results from the Exxon Valdez oil spill in Alaska. Biodegradation 3:315–335

    Article  CAS  Google Scholar 

  • Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20292–20297

    Article  CAS  PubMed  Google Scholar 

  • Robbins WK, Hsu CS (1996) Petroleum Composition. In: Kroschwitz JI (ed) Kirk-othmer encyclopedia of chemical technology, 4th edn. Wiley, New York, pp 352–370

    Google Scholar 

  • Rodriguez-R LM, Overholt WA, Hagan C, Huettel M, Kostka JE, Konstantinidis KT (2015) Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. ISME J 9:1928–1940

    Article  PubMed  PubMed Central  Google Scholar 

  • Rorick R, Nedwed T, DeMarco G, Cooper C (2012) Comment on “A tale of two spills: novel science and policy implications of an emerging new oil spill model”. Bioscience 62:1009–1010

    Article  Google Scholar 

  • Rosenberg E, Ron EZ (1998) Non-polluting compositions to degrade hydrocarbons and microorganisms. US Patent 5,780,290

    Google Scholar 

  • Rosenberg E, Legman R, Kushmaro A, Adler E, Abir H, Ron EZ (1996) Oil bioremediation using insoluble nitrogen source. J Biotechnol 51:273–278

    Article  CAS  PubMed  Google Scholar 

  • Short JW, Irvine GV, Mann DH, Maselko JM, Pella JJ, Lindeberg MR, Payne JR, Driskell WB, Rice SD (2007) Slightly weathered Exxon Valdez oil persists in Gulf of Alaska beach sediments after 16 years. Environ Sci Technol 41:1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Siron R, Pelletier É, Brochu C (1995) Environmental factors influencing the biodegradation of petroleum hydrocarbons in cold seawater. Arch Environ Contam Toxicol 28:406–416

    Article  CAS  Google Scholar 

  • Sirota EB (2005) Physical structure of asphaltenes. Energy Fuel 19:1290–1296

    Article  CAS  Google Scholar 

  • Speight JG (2014) The chemistry and technology of petroleum, 5th edn. CRC press, Boca Raton

    Book  Google Scholar 

  • Stout SA, Payne JR (2016) Macondo oil in deep-sea sediments: Part 1–sub-sea weathering of oil deposited on the seafloor. Mar Pollut Bull 111: 365. in press.

    Article  CAS  PubMed  Google Scholar 

  • Sugiura K, Ishihara M, Shimauchi T, Harayama S (1997) Physicochemical properties and biodegradability of crude oil. Environ Sci Technol 31:45–51

    Article  CAS  Google Scholar 

  • Swannell RPJ, Daniel F (1999) Effect of dispersants on oil biodegradation under simulated marine conditions. In: Proceedings of the international oil spill conference. American Petroleum Institute, Washington, DC, pp 169–176

    Google Scholar 

  • Swannell RPJ, Lee K, McDonagh M (1996) Field evaluations of marine spill bioremediation. Microbiol Rev 60:342–365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swannell RPJ, Mitchell D, Lethbridge G, Jones D, Heath D, Hagley M, Jones M, Petch S, Milne R, Croxford R, Lee K (1999) A field demonstration of the efficacy of bioremediation to treat oiled shore-lines following the Sea Empress incident. Environ Technol 20:863–873

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (2008) Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons. Mar Pollut Bull 57:716–726

    Article  CAS  PubMed  Google Scholar 

  • Tate PT, Shin WS, Pardue JH, Jackson WA (2012) Bioremediation of an experimental oil spill in a coastal Louisiana salt marsh. Water Air Soil Pollut 223:1115–1123

    Article  CAS  Google Scholar 

  • The Federal Interagency Solutions Group: Oil Budget Calculator Science and Engineering Team (2010) Oil budget calculator technical documentation. http://www.restorethegulf.gov/sites/default/files/documents/pdf/OilBudgetCalc_Full_HQ-Print_111110.pdf. Accessed 1 Aug 2016

  • Thomas R, Lunel T (1993) The Braer incident; dispersion in action. In: Proceedings of the 16th Arctic and Marine Oil Spill Programme (AMOP) technical seminar, alberta, environment Canada, Edmonton, pp 843–859

    Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, Berlin

    Book  Google Scholar 

  • Tsutsumi H, Kono M, Takai K, Manabe T (2000) Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. III. Field test of a bioremediation agent with microbiological cultures for the treatment of an oil spill. Mar Pollut Bull 40:320–324

    Article  CAS  Google Scholar 

  • Uraizee FA, Venosa AD, Suidan MT (1998) A Model for diffusion controlled bioavailability of crude oil components. Biodegradation 8:287–296

    Article  CAS  Google Scholar 

  • USDOE (2008) Strategic petroleum reserve crude oil assay manual. www.spr.doe.gov/reports/docs/CrudeOilAssayManual.pdf. Accessed 1 Aug 2016

  • USEPA (2006) Swirling flask dispersant effectiveness test, revised standard dispersant toxicity test, and bioremediation agent effectiveness test. http://www.gpo.gov/fdsys/pkg/CFR-2006-title40-vol27/xml/CFR-2006-title40-vol27-part300-appC.xml. Accessed 1 Aug 2016

  • USEPA (2014) National contingency plan Subpart J. http://www2.epa.gov/emergency-response/national-contingency-plan-subpart-j#testing. Accessed 1 Aug 2016

  • Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, Hu L, Kinnaman FS, Yvon-Lewis S, Du M, Chan EW (2010) Propane respiration jump-starts microbial response to a deep oil spill. Science 330:208–211

    Article  CAS  PubMed  Google Scholar 

  • Valentine DL, Mezić I, Maćešić S, Črnjarić-Žic N, Ivić S, Hogan PJ, Fonoberov VA, Loire S (2012) Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc Natl Acad Sci U S A 109:20286–20291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varadaraj R, Robbins ML, Bock J, Pace S, MacDonald D (1995) Dispersion and biodegradation of oil spills on Water. In: Proceedings of the international oil spill conference. American Petroleum Institute, Washington, DC, pp 101–106

    Google Scholar 

  • Venosa AD, Holder EL (2007) Biodegradability of dispersed crude oil at two different temperatures. Mar Pollut Bull 54:545–553

    Article  CAS  PubMed  Google Scholar 

  • Venosa AD, Haines JR, Nisamaneepong W, Govind R, Pradhan S, Siddique B (1992) Efficacy of commercial products in enhancing biodegradation in closed laboratory reactors. J Ind Microbiol 10:13–23

    Article  CAS  Google Scholar 

  • Venosa AD, Suidan MT, Wrenn BA, Strohmeier KL, Haines JR, Eberhart BL, King D, Holder E (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sci Technol 30:1764–1775

    Article  CAS  Google Scholar 

  • Venosa AD, Lee K, Suidan MT, Garcia-Blanco S, Cobanli S, Moteleb M, Haines JR, Tremblay G, Hazelwood M (2002) Bioremediation and biorestoration of a crude oil-contaminated freshwater wetland on the St. Lawrence River. Biorem J 6:261–281

    Article  CAS  Google Scholar 

  • Venosa AD, Campo P, Suidan MT (2010) Biodegradability of lingering crude oil 19 years after the Exxon Valdez oil spill. Environ Sci Technol 44:7613–7621

    Article  CAS  PubMed  Google Scholar 

  • Wade TL, Sericano JL, Sweet ST, Knap AH, Guinasso NL (2016) Spatial and temporal distribution of water column total polycyclic aromatic hydrocarbons (PAH) and total petroleum hydrocarbons (TPH) from the Deepwater Horizon (Macondo) incident. Mar Pollut Bull 103:286–293

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zheng Y, Lee K (2013) Chemical dispersion of oil with mineral fines in a low temperature environment. Mar Pollut Bull 72:205–212

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Sandoval K, Ding Y, Stoeckel D, Minard-Smith A, Andersen G, Dubinsky EA, Atlas R, Gardinali P (2016a) Biodegradation of dispersed Macondo crude oil by indigenous Gulf of Mexico microbial communities. Sci Total Environ 557–558:453–468

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Xue Y, Wang D, Shi S, Grice K, Greenwood PF (2016b) Biodegradation and water washing within a series of petroleum reservoirs of the Panyu Oil Field. Org Geochem 96:65–76

    Article  CAS  Google Scholar 

  • Warnock AM, Hagen SC, Passeri DL (2015) Marine tar residues: a review. Water Air Soil Pollut 226:1–24

    Article  CAS  Google Scholar 

  • Weise AM, Nalewajko C, Lee K (1999) Oil-mineral fine interactions facilitate oil biodegradation in seawater. Environ Technol 20:811–824

    Article  CAS  Google Scholar 

  • Wiltshire GA, Corcoran L (1991) Response to the Presidente Rivera major oil spill, Delaware River. In: Proceedings of the international oil spill conference. American Petroleum Institute, pp 253–258

    Google Scholar 

  • Wolfe DA, Hameedi MJ, Galt JA, Watabayashi G, Short J, O’CLAIRE C, Rice S, Michel J, Payne JR, Braddock J, Hanna S (1994) The fate of the oil spilled from the Exxon Valdez. Environ Sci Technol 28:560A–568A

    Article  CAS  PubMed  Google Scholar 

  • Word JQ, Clark JR, Word LS (2013) Comparison of the acute toxicity of Corexit 9500 and household cleaning products. Hum Ecol Risk Assess 21:707–725

    Article  CAS  Google Scholar 

  • Wrenn BA, Sarnecki KL, Kohar ES, Lee K, Venosa AD (2006) Effects of nutrient source and supply on crude oil biodegradation in continuous-flow beach microcosms. J Environ Eng 132:75–84

    Article  CAS  Google Scholar 

  • Wu R, Pan S, Li Y, Wang L (2014) Atmospheric oxidation mechanism of toluene. J Phys Chem A 118:4533–4547

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Yong LC, Lim YG, Obbard JP (2005) Use of slow-release fertilizer and biopolymers for stimulating hydrocarbon biodegradation in oil-contaminated beach sediments. Mar Pollut Bull 51:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. Prince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Prince, R.C., Atlas, R.M. (2019). Bioremediation of Marine Oil Spills. In: Steffan, R. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50433-9_13

Download citation

Publish with us

Policies and ethics