Skip to main content

Membrane Homeostasis upon Nutrient (C, N, P) Limitation

  • Reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Natural environments are dynamic systems where organisms have to constantly acclimate to fluctuations in external conditions, including the bioavailability of essential nutrients carbon (C), nitrogen (N), and phosphorus (P). Membrane lipid plasticity plays an important role to adjust to these environmental challenges by either reducing the cellular need of these macronutrients or to help protect the cell and keep it viable during a prolonged state of reduced energy supply. When P limited, many organisms are able to replace their phospholipids with non-phosphorus containing glycolipids or aminolipids, liberating P for other cellular processes. Under N depletion, a common stress response is the increased production of triacylglycerol (TAG) lipids that serve as energy and carbon storage until nutrients become available again. During severe C starvation, the cell switches to survival mode and membrane lipids are remodeled to conserve energy and stabilize the cell against external stressors, but are also degraded and serve as an endogenous carbon and energy supply. These homeostatic adjustments are found among all domains of life with different specificities and play decisive roles during natural selection of populations in marine and terrestrial ecosystems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   489.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abida H, Dolch L-J, Meï C, Villanova V, Conte M, Block MA, Finazzi G, Bastien O, Tirichine L, Bowler C, Rébeillé F, Petroutsos D, Jouhet J, Maréchal E (2014) Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol 167:118–136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aguilar-López JL, Funes S (2018) Autophagy in stationary phase of growth. In: Geiger O (ed) Biogenesis of fatty acids, lipids and membranes, Handbook of hydrocarbon and lipid microbiology. Springer Nature Switzerland AG, pp 1–18

    Google Scholar 

  • Angkawijaya AE, Nakamura Y (2017) Arabidopsis PECP1 and PS2 are phosphate starvation-inducible phosphocholine phosphatases. Biochem Biophys Res Comm 494:397–401

    Article  CAS  PubMed  Google Scholar 

  • Bates PD, Browse J (2012) The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci 3:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Benning C, Beatty JT, Prince RC, Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci USA 90:1561–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benning C, Huang ZH, Gage DA (1995) Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation. Arch Biochem Biophys 317:103–111

    Article  CAS  PubMed  Google Scholar 

  • Bosak T, Schubotz F, de Santiago-Torio A, Kuehl JV, Carlson HK, Watson N, Daye M, Summons RE, Arkin AP, Deutschbauer AM (2016) System-wide adaptations of Desulfovibrio alaskensis G20 to phosphate-limited conditions. PLoS One 11:e0168719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boudière L, Michaud M, Petroutsos D, Rébeillé F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, Block MA, Maréchal E (2014) Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim Biophys Acta 1837:470–480

    Article  PubMed  CAS  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynmics of triacylglycerol accumulation in nine microalgal strains. Bioresour Technol 124:217–226

    Article  CAS  PubMed  Google Scholar 

  • Cañavate JP, Armada I, Hachero-Cruzado I (2016) Interspecific variability in phosphorus-induced lipid remodelling among marine eukaryotic phytoplankton. New Phytol 213:700–713

    Article  PubMed  CAS  Google Scholar 

  • Carini P, Van Mooy BAS, Thrash JC, White A, Zhao Y, Campbell EO, Fredricks HF, Giovannoni SJ (2015) SAR11 lipid renovation in response to phosphate starvation. Proc Natl Acad Sci USA 112:7767–7772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou T-J, Lin S-I (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    Article  CAS  PubMed  Google Scholar 

  • Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degraeve-Guilbault C, Bréhélin C, Haslam R, Sayanova O, Marie-Luce G, Jouhet J, Corellou F (2017) Glycerolipid characterization and nutrient deprivation-associated changes in the green picoalga Ostreococcus tauri. Plant Physiol 173:2060–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dembitsky V (1996) Betaine ether-linked glycerolipids: chemistry and biology. Prog Lipid Res 35:1–51

    Article  CAS  PubMed  Google Scholar 

  • DiRusso CC, Nyström T (1998) The fats of Escherichia coli during infancy and old age: regulation by global regulators, alarmones and lipid intermediates. Mol Microbiol 27:1–8

    Article  CAS  PubMed  Google Scholar 

  • Dowhan W, Bogdanov M, Mileykovskaya E (2016) Functional roles of lipids in membranes. In: Ridgway ND, McLeod RS (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Boston, pp 1–40

    Google Scholar 

  • Du Z-Y, Benning C (2016) Triacylglycerol accumulation in photosynthetic cells in plants and algae. In: Nakamura Y, Li-Biesson Y (eds) Lipids in plant and algae development. Springer, Cham, pp 179–205

    Chapter  Google Scholar 

  • Elling FJ, Könneke M, Nicol GW, Stieglmeier M, Bayer B, Spieck E, La Torre De JR, Becker KW, Thomm M, Prosser JI, Herndl GJ, Schleper C, Hinrichs K-U (2017) Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environ Microbiol 19:2681–2700

    Article  CAS  PubMed  Google Scholar 

  • Essigmann B, Güler S, Narang RA, Linke D, Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95:1950–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans TW, Wörmer L, Lever MA, Lipp JS, Lagostina L, Lin Y-S, Jørgensen BB, Hinrichs K-U (2017) Size and composition of subseafloor microbial community in the Benguela upwelling area examined from intact membrane lipid and DNA analysis. Org Geochem 111:86–100

    Article  CAS  Google Scholar 

  • Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66:829–839

    Article  CAS  PubMed  Google Scholar 

  • Gaude N, Bréhélin C, Tischendorf G, Kessler F, Dörmann P (2007) Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J 49:729–739

    Article  CAS  PubMed  Google Scholar 

  • Geiger O, Röhrs V, Weissenmayer B, Finan TM, Thomas-Oates JE (1999) The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol Microbiol 32:63–73

    Article  CAS  PubMed  Google Scholar 

  • Geiger O, González-Silva N, López-Lara IM, Sohlenkamp C (2010) Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 49:46–60

    Article  CAS  PubMed  Google Scholar 

  • Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization – a review. Soil Biol Biochem 42:2058–2067

    Article  CAS  Google Scholar 

  • Geske T, vom Dorp K, Dormann P, Holzl G (2012) Accumulation of glycolipids and other nonphosphorous lipids in Agrobacterium tumefaciens grown under phosphate deprivation. Glycobiology 23:69–80

    Article  PubMed  CAS  Google Scholar 

  • Grogan DW, Cronan JE (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grzymski JJ, Dussaq AM (2011) The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J 6:71–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Güler S, Seeliger A, Härtel H, Renger G, Benning C (1996) A null mutant of Synechococcus sp. PCC7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J Biol Chem 271:7501–7507

    Article  PubMed  Google Scholar 

  • Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Molec Cell Microbiol 19:281–296

    Article  CAS  Google Scholar 

  • Härtel H, Dormann P, Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97: 10649–10654

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan M, Blanc PJ, Granger L-M, Pareilleux A (1996) Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochem 31:355–361

    Article  CAS  Google Scholar 

  • Hayward AP, Dinesh-Kumar SP (2011) What can plant autophagy do for an innate immune response? Annu Rev Phytopathol 49:557–576

    Article  CAS  PubMed  Google Scholar 

  • Heath RJ, Rock CO (1996) Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. J Biol Chem 271:1833–1836

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka S, Matsuzaki H, Shibuya I (1993) Active increase in cardiolipin synthesis in the stationary phase growth phase and its physiological significance in Escherichia coli. FEBS Lett 336:221–224

    Article  CAS  PubMed  Google Scholar 

  • Hölzl G, Zähringer U, Warnecke D, Heinz E (2005) Glycoengineering of cyanobacterial thylakoid membranes for future studies on the role of glycolipids in photosynthesis. Plant Cell Physiol 46:1766–1778

    Article  PubMed  CAS  Google Scholar 

  • Hölzl G, Dörmann P (2007) Structure and function of glycoglycerolipids in plants and bacteria. Prog Lipid Res 46:225–243

    Article  CAS  PubMed  Google Scholar 

  • Hood MA, Guckert JB, White DC, Deck F (1986) Effects of nutrient deprivation on lipid, carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae. Appl Environ Microbiol 52:788–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Houser JR, Barnhart C, Boutz DR, Carroll SM, Dasgupta A, Michener JK, Needham BD, Papoulas O, Sridhara V, Sydykova DK, Marx CJ, Trent MS, Barrick JE, Marcotte EM, Wilke CO (2015) Controlled measurement and comparative analysis of cellular components in E. coli reveals broad regulatory changes in response to glucose starvation. PLoS Comput Biol 11:e1004400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janßen HJ, Steinbüchel A (2014) Fatty acid synthesis in Escherichia coli and its application towards the production of fatty acid based biofuels. Biotechnol Biofuels 7:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jørgensen BB, Marshall IPG (2016) Slow microbial life in the seabed. Ann Rev Mar Sci 8:311–332

    Article  PubMed  Google Scholar 

  • Journet EP, Bligny R, Douce R (1986) Biochemical changes during sucrose deprivation in higher plant cells. J Biol Chem 261:3193–3199

    CAS  PubMed  Google Scholar 

  • Kalisch B, Dörmann P, Hölzl G (2016) DGDG and glycolipids in plants and algae. In: Nakamura Y, Li-Biesson Y (eds) Lipids in plant and algae development. Springer, Cham, pp 51–83

    Chapter  Google Scholar 

  • Karl DM (2014) Microbially mediated transformations of phosphorus in the sea: new views of an old cycle. Ann Rev Mar Sci 6:279–337

    Article  PubMed  Google Scholar 

  • Kelly AA, Kalisch B, Hölzl G, Schulze S, Thiele J, Melzer M, Roston RL, Benning C, Dörmann P (2016) Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana. Proc Natl Acad Sci USA 113:10714–10719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjelleberg S, Hermansson M, Mårdén P, Jones GW (1987) The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annu Rev Microbiol 41:25–49

    Article  CAS  PubMed  Google Scholar 

  • Koga Y, Nakano M (2008) A dendrogram of archaea based on lipid component parts composition and its relationship to rRNA phylogeny. Syst Appl Microbiol 31:169–182

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Chae HS, Lee TK, Kim SH, Shin SH, Cho BH, Cho SH, Kang BG, Lee WS (1998) Ethylene-mediated phospholipid catabolic pathway in glucose-starved carrot suspension cells. Plant Physiol 116:223–229

    Article  CAS  Google Scholar 

  • López-Lara IM, Geiger O (2016) Bacterial lipid diversity. Biochim Biophys Acta 1862:1287–1299

    Article  CAS  Google Scholar 

  • López-Lara IM, Gao J-L, Soto MJ, Solares-Pérez A, Weissenmayer B, Sohlenkamp C, Verroios GP, Thomas-Oates J, Geiger O (2005) Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with Alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. Mol Plant Microbe Interact 18:973–982

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Van Mooy BA, Heithoff A, Dyhrman ST (2010) Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. ISME J 5:1057–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meador TB, Gagen EJ, Loscar ME, Goldhammer T, Yoshinaga MY, Wendt J, Thomm M, Hinrichs K-U (2014) Thermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability. Front Microbiol 5:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Minnikin DE, Abdolrahimzadeh H, Baddiley J (1971) The interrelation of polar lipids in bacterial membranes. Biochim Biophys Acta 249:651–655

    Article  CAS  Google Scholar 

  • Moellering ER, Benning C (2011) Galactoglycerolipid metabolism under stress: a time for remodeling. Trends Plant Sci 16:98–107

    Article  CAS  PubMed  Google Scholar 

  • Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, Galbraith ED, Geider RJ, Guieu C, Jaccard SL, Jickells TD, La Roche J, Lenton TM, Mahowald NM, Maranon E, Marinov I, Moore JK, Nakatsuka T, Oschlies A, Saito MA, Thingstad TF, Tsuda A, Ulloa O (2013) Processes and patterns of oceanic nutrient limitation. Nat Geosci 6:701–710

    Article  CAS  Google Scholar 

  • Mühlroth A, Winge P, Assimi El A, Jouhet J, Maréchal E, Hohmann-Marriott MF, Vadstein O, Bones AM (2017) Mechanisms of phosphorus acquisition and lipid class remodeling under P limitation in a marine microalga. Plant Physiol 175:1543–1559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • My L, Ghandour Achkar N, Viala JP, Bouveret E (2015) Reassessment of the genetic regulation of fatty acid synthesis in Escherichia coli: global positive control by the functional dual regulator FadR. J Bacteriol 197:1862–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y (2013) Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 52:43–50

    Article  CAS  PubMed  Google Scholar 

  • Nyström T (2004) Stationary-phase physiology. Annu Rev Microbiol 58:161–181

    Article  PubMed  CAS  Google Scholar 

  • Okazaki Y, Nishizawa T, Takano K, Ohnishi M, Mimura T, Saito K (2015) Induced accumulation of glucuronosyldiacylglycerol in tomato and soybean under phosphorus deprivation. Physiol Plant 155:33–42

    Article  CAS  PubMed  Google Scholar 

  • Parsons JB, Rock CO (2013) Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 52:249–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pech-Canul À, Nogales J, Miranda-Molina A, Àlvarez L, Geiger O, Soto MJ, López-Lara IM (2011) FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol 193:6295–6304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrie JR, Vanhercke T, Shrestha P, Tahchy El A, White A, Zhou X-R, Liu Q, Mansour MP, Nichols PD, Singh SP (2012) Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway. PLoS One 7:e35214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirier Y, Thoma S, Somerville C, Schiefelbein J (1991) Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol 97:1087–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popko J, Herrfurth C, Feussner K, Ischebeck T, Iven T, Haslam R, Hamilton M, Sayanova O, Napier J, Khozin-Goldberg I, Feussner I (2016) Metabolome analysis reveals betaine lipids as major source for triglyceride formation, and the accumulation of sedoheptulose during nitrogen-starvation of Phaeodactylum tricornutum. PLoS One 11:e0164673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riekhof WR, Naik S, Bertrand H, Benning C, Voelker DR (2014) Phosphate starvation in fungi induces the replacement of phosphatidylcholine with the phosphorus-free betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. Eukar Cell 13:749–757

    Article  CAS  Google Scholar 

  • Rühl M, Le Coq D, Aymerich S, Sauer U (2012) 13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis. J Biol Chem 287:27959–27970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruttenberg KC (2014) The global phosphorus cycle. In: Karl DM, Schlesinger WH (eds) Treatise on Geochem, 2nd edn, Vol. 10, Biogeochem. Elsevier, Oxford, UK, pp 499–558

    Chapter  Google Scholar 

  • Sato N, Hagio M, Wada H, Tsuzuki M (2000) Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci USA 97:10655–10660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubotz F, Wakeham SG, Lipp JS, Fredricks HF, Hinrichs K-U (2009) Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea. Environ Microbiol 11:2720–2734

    Article  CAS  PubMed  Google Scholar 

  • Sebastian M, Smith AF, González JM, Fredricks HF, Van Mooy B, Koblížek M, Brandsma J, Koster G, Mestre M, Mostajir B, Pitta P, Postle AD, Sánchez P, Gasol JM, Scanlan DJ, Chen Y (2016) Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency. ISME J 10:968–978

    Article  CAS  PubMed  Google Scholar 

  • Semeniuk A, Sohlenkamp C, Duda K, Holzl G (2014) A bifunctional glycosyltransferase from Agrobacterium tumefaciens synthesizes monoglucosyl and glucuronosyl diacylglycerol under phosphate deprivation. J Biol Chem 14:10104–10114

    Article  CAS  Google Scholar 

  • Senik SV, Maloshenok LG, Kotlova ER, Shavarda AL, Moiseenko KV, Bruskin SA, Koroleva OV, Psurtseva NV (2015) Diacylglyceryltrimethylhomoserine content and gene expression changes triggered by phosphate deprivation in the mycelium of the basidomycete Flammulina velutipes. Phytochemistry 117:34–42

    Article  CAS  PubMed  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Shemi A, Schatz D, Fredricks HF, Van Mooy BAS, Porat Z, Vardi A (2016) Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi. New Phytol 211:886–898

    Article  CAS  PubMed  Google Scholar 

  • Siebers M, Dörmann P, Hölzl G (2015) Membrane remodelling in phosphorus-deficient plants. In: Plaxton WC, Lambers H (eds) Annu plant rev vol 48: phosphorus metabolism in plants, 1st edn. Wiley, Chichester, pp 237–263

    Chapter  Google Scholar 

  • Slávikova S, Shy G, Yao Y, Glozman R, Levanony H, Pietrokosvski S, Elazar Z, Galili G (2005) The autophagy-associated Atg8 gene family operates both under favourable growth coniditions and under starvation stresses in Arabidopsis plants. J Exp Bot 56:2839–2849

    Article  PubMed  Google Scholar 

  • Tavormina PL, Kellermann MY, Antony CP, Tocheva EI, Dalleska NF, Jensen AJ, Valentine DL, Hinrichs K-U, Jensen GJ, Dubilier N, Orphan VJ (2016) Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti. Mol Microbiol 103:242–252

    Article  PubMed  CAS  Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat Rev Microbiol 5:316–323

    Article  CAS  PubMed  Google Scholar 

  • Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci USA 103:8607–8612

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblížek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappé MS, Webb EA (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72

    Article  PubMed  CAS  Google Scholar 

  • Vanderwinkel E, Dee Vliegher M, Fontaine M, Charles D, Denamur F, Vandervoorde D, De Kegel D (1976) Septation deficiency and phospholipid pertubation in Escherichia coli genetically constitutive for the beta oxidation pathway. J Bacteriol 127:1389–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  • Yao M, Elling FJ, Jones C, Nomosatryo S, Long CP, Crowe SA, Antoniewicz MR, Hinrichs K-U, Maresca JA (2015) Heterotrophic bacteria from an extremely phosphate-poor lake have conditionally reduced phosphorus demand and utilize diverse sources of phosphorus. Environ Microbiol 18:656–667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoon K, Han D, Li Y, Sommerfeld M, Hu Q (2012) Phospholipid: diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell 24:3708–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu SM (1999) Cellular and genetic responses of plants to sugar starvation. Plant Physiol 121:687–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavaleta-Pastor M, Sohlenkamp C, Gao JL, Guan Z, Zaheer R, Finan TM, Raetz CRH, López-Lara IM, Geiger O (2010) Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation. Proc Natl Acad Sci USA 107:302–307

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-M, Rock CO (2016) Fatty acid and phospholipid biosynthesis in prokaryotes. In: Ridgway ND, McLeod RS (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam, pp 73–112

    Chapter  Google Scholar 

  • Zienkiewicz K, Du Z-Y, Ma W, Vollheyde K, Benning C (2016) Stress-induced neutreal lipid biosynthesis in microalga – molecular cellular and phyisological insights. Biochim Biophys Acta 1861:1269–1281

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Central Research Development Fund of the University of Bremen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Schubotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schubotz, F. (2019). Membrane Homeostasis upon Nutrient (C, N, P) Limitation. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50430-8_59

Download citation

Publish with us

Policies and ethics