Skip to main content

Modeling Lipid Membranes

  • Reference work entry
  • First Online:
Book cover Biogenesis of Fatty Acids, Lipids and Membranes

Abstract

Molecular modeling of lipid membranes has been an evolving field over the last 40 years. This chapter provides a brief historical background of simulations and provides an introductory overview of computational membrane modeling at the molecular level. The development of lipid force fields (FFs) at various levels (atomistic to coarse grained) has allowed for accurate descriptions of membrane properties. The current diversity in lipids available in FFs currently allows researchers to model representative membrane models across the biota spectrum. Modeling is not limited to lipids, and many functional studies of cellular membranes focus on membrane-associated proteins that reside in or interact with the surface of the membrane. The field of molecular membrane modeling is in an exciting stage to grow and investigate a wide array of biological phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 489.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akabori K, Nagle JF (2015) Structure of the DMPC lipid bilayer ripple phase. Soft Matter 11:918–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Clarendon Press, Oxford

    Google Scholar 

  • Ando J, Kinoshita M, Cui J, Yamakoshi H, Dodo K, Fujita K, Murata M, Sodeoka M (2015) Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy. Proc Natl Acad Sci 112:4558–4563

    Article  CAS  PubMed  Google Scholar 

  • Balijepalli A, Robertson JW, Reiner JE, Kasianowicz JJ, Pastor RW (2013) Theory of polymer-nanopore interactions refined using molecular dynamics simulations. J Am Chem Soc 135:7064–7072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton R, Khakbaz P, Bera I, Klauda JB, Iovine MK, Berger BW (2016) Interplay of specific trans- and juxtamembrane interfaces in plexin A3 dimerization and signal transduction. Biochemistry 55:4928–4938

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar I, Kastenholz M, Lins RD, Oostenbrink C, Schuler LD, Tieleman DP, van Gunsteren WF (2003) A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur Biophys J Biophys Lett 32:67–77

    CAS  Google Scholar 

  • Chowdhary J, Harder E, Lopes PEM, Huang L, MacKerell AD, Roux B (2013) A polarizable force field of dipalmitoylphosphatidylcholine based on the classical drude model for molecular dynamics simulations of lipids. J Phys Chem B 117:9142–9160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickey AN, Yim W-S, Faller R (2009) Using ergosterol to mitigate the deleterious effects of ethanol on bilayer structure. J Phys Chem B 113:2388–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson CJ, Madej BD, Skjevik ÅA, Betz RM, Teigen K, Gould IR, Walker RC (2014) Lipid14: the amber lipid force field. J Chem Theory Comput 10:865–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edholm O, Nagle JF (2005) Areas of molecules in membranes consisting of mixtures. Biophys J 89:1827–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  CAS  PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML (1995) The origin of the hydration interaction of lipid bilayers from MD simulation of dipalmitoylphosphatidylcholine membranes in gel and liquid crystalline phases. Langmuir 11:4519–4531

    Article  CAS  Google Scholar 

  • Feigenson GW (2009) Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures. Biochim Biophys Acta Biomembr 1788:47–52

    Article  CAS  Google Scholar 

  • Feller SE (2000) Molecular dynamics simulations of lipid bilayers. Curr Opin Colloid Interface Sci 5:217–223

    Article  CAS  Google Scholar 

  • Feller SE, MacKerell AD Jr (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104:7510–7515

    Article  CAS  Google Scholar 

  • Frenkel D, Smit B (2002) Understanding molecular simulations: from algorithms to applications. Academic, San Diego

    Google Scholar 

  • Gawrisch K, Eldho NV, Polozov IV (2002) Novel NMR tools to study structure and dynamics of biomembranes. Chem Phys Lipids 116:135–151

    Article  CAS  PubMed  Google Scholar 

  • Guros NB, Klauda JB (2016) Characterizing nanopore-polymer interactions and cys-loop protein receptor gating. Biophys J 110:630a–631a

    Article  Google Scholar 

  • Han W, Schulten K (2012) Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: improved backbone hydration and interactions between charged side chains. J Chem Theory Comput 8:4413–4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson CM, Block DE (2014) Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 80:2966–2972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hénin J, Fiorin G, Chipot C, Klein ML (2010) Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. J Chem Theory Comput 6:35–47

    Article  PubMed  CAS  Google Scholar 

  • Huang K, García AE (2014) Acceleration of lateral equilibration in mixed lipid bilayers using replica exchange with solute tempering. J Chem Theory Comput 10:4264–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingólfsson HI, Melo MN, van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, de Vries AH, Tieleman DP, Marrink SJ (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136:14554–14559

    Article  PubMed  CAS  Google Scholar 

  • Ishiyama T, Terada D, Morita A (2016) Hydrogen-bonding structure at zwitterionic lipid/water interface. J Phys Chem Lett 7:216–220

    Article  CAS  PubMed  Google Scholar 

  • Jämbeck JPM, Lyubartsev AP (2012) An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theory Comput 8:2938–2948

    Article  PubMed  CAS  Google Scholar 

  • Jämbeck JPM, Lyubartsev AP (2013) Another piece of the membrane puzzle: extending slipids further. J Chem Theory Comput 9:774–784

    Article  PubMed  CAS  Google Scholar 

  • Jo S, Kim T, Im W (2007) Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2:e880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khakbaz P, Klauda JB (2015) Probing the importance of lipid diversity in cell membranes via molecular simulation. Chem Phys Lipids 192:12–22

    Article  CAS  PubMed  Google Scholar 

  • Khakbaz P, Klauda J (2016) Probing the ripple phase of lipid bilayers using molecular simulations. Biophys J 110:86a

    Article  Google Scholar 

  • Klauda JB, Brooks BR, MacKerell AD Jr, Venable RM, Pastor RW (2005) An Ab Initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J Phys Chem B 109:5300–5311

    Article  CAS  PubMed  Google Scholar 

  • Klauda JB, Kučerka N, Brooks BR, Pastor RW, Nagle JF (2006) Simulation-based methods for interpreting X-ray data from lipid bilayers. Biophys J 90:2796–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klauda JB, Eldho NV, Gawrisch K, Brooks BR, Pastor RW (2008a) Collective and noncollective models of NMR relaxation in lipid vesicles and multilayers. J Phys Chem B 112:5924–5929

    Article  CAS  PubMed  Google Scholar 

  • Klauda JB, Pastor RW, Brooks BR, Roberts MF, Redfield AG (2008b) Rotation of lipids in membranes: MD simulation, 31P spin-lattice relaxation, and rigid-body dynamics. Biophys J 94:3074–3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klauda JB, Venable RM, MacKerell AD, Pastor RW (2008c) Considerations for lipid force field development. In: Scott EF (ed) Computational modeling of membrane bilayers. Elsevier, London, pp 1–48

    Google Scholar 

  • Klauda JB, Venable RM, Freites JA, O’Connor JW, Mondragon-Ramirez C, Vorobyov I, Tobias DJ, MacKerell AD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klauda JB, Monje V, Kim T, Im W (2012) Improving the CHARMM force field for polyunsaturated fatty acid chains. J Phys Chem B 116:9424–9431

    Article  CAS  PubMed  Google Scholar 

  • Konas RM, Daristotle JL, Harbor NB, Klauda JB (2015) Biophysical changes of lipid membranes in the presence of ethanol at varying concentrations. J Phys Chem B 119:13134–13141

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Janssen BJ, Malinauskas T, Vangoor VR, Coles CH, Kaufmann R, Ni T, Gilbert RJ, Padilla-Parra S, Pasterkamp RJ, Jones EY (2016) Structural basis for plexin activation and regulation. Neuron 91:548–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Tran A, Allsopp M, Lim JB, Hénin J, Klauda JB (2014) CHARMM36 united-atom chain model for lipids and surfactants. J Phys Chem B 118:547–556

    Article  CAS  PubMed  Google Scholar 

  • Leekumjorn S, Sum AK (2007) Molecular studies of the gel to liquid-crystalline phase transition for fully hydrated DPPC and DPPE bilayers. BBA-Biomembr 1768:354–365

    Article  CAS  Google Scholar 

  • Li Z, Venable RM, Rogers LA, Murray D, Pastor RW (2009) Molecular dynamics simulations of PIP2 and PIP3 in lipid bilayers: determination of ring orientation, and the effects of surface roughness on a Poisson-Boltzmann description. Biophys J 97:155–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wen PC, Moradi M, Tajkhorshid E (2015) Computational characterization of structural dynamics underlying function in active membrane transporters. Curr Opin Struct Biol 31:96–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim JB, Klauda JB (2011) Branching at the iso- and anteiso-positions in complex chlamydia membranes: a molecular dynamics study. Biochim Biophys Acta Biomembr 1808:323–331

    Article  CAS  Google Scholar 

  • Lim JB, Rogaski B, Klauda JB (2012) Update of the cholesterol force field parameters in CHARMM. J Phys Chem B 116:203–210

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Chernyshov A, Najdi T, Fu Y, Dickerson J, Sandmeyer S, Jarboe L (2013) Membrane stress caused by octanoic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:3239–3251

    Article  CAS  PubMed  Google Scholar 

  • Lyubartsev AP, Rabinovich AL (2016) Force field development for lipid membrane simulations. Biochim Biophys Acta Biomembr 1858:2483–2497

    Article  CAS  Google Scholar 

  • Mannock DA, Lewis RNAH, McMullen TPW, McElhaney RN (2010) The effect of variations in phospholipid and sterol structure on the nature of lipid–sterol interactions in lipid bilayer model membranes. Chem Phys Lipids 163:403–448

    Article  CAS  PubMed  Google Scholar 

  • Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  CAS  PubMed  Google Scholar 

  • McIntosh TJ, Simon SA (1994) Long- and short-range interactions between phospholipid/ganglioside GM1 bilayers. Biochemistry 33:10477–10486

    Article  CAS  PubMed  Google Scholar 

  • Mojumdar EH, Gooris GS, Barlow DJ, Lawrence MJ, Deme B, Bouwstra JA (2015) Skin lipids: localization of ceramide and fatty acid in the unit cell of the long periodicity phase. Biophys J 108:2670–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monje-Galvan V, Klauda JB (2015) Modelling yeast organelle membranes and how lipid diversity influences bilayer properties. Biochemistry 54:6852–6861

    Article  CAS  PubMed  Google Scholar 

  • Monje-Galvan V, Klauda JB (2016) Peripheral membrane proteins: tying the knot between experiment and computation. Biochim Biophys Acta Biomembr 1858:1584–1593

    Article  CAS  Google Scholar 

  • Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink S-J (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Jung J, Sugita Y (2013) Surface-tension replica-exchange molecular dynamics method for enhanced sampling of biological membrane systems. J Chem Theory Comput 9:5629–5640

    Article  CAS  PubMed  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta-Rev Biomembr 1469:159–195

    Article  CAS  Google Scholar 

  • O’Connor JW, Klauda JB (2011) Lipid membranes with a majority of cholesterol: applications to the ocular lens and aquaporin 0. J Phys Chem B 115:6455–6464

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo YZ, Pogorelov Taras V, Arcario Mark J, Christensen Geoff A, Tajkhorshid E (2012) Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model. Biophys J 102:2130–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Heberle FA, Petruzielo RS, Katsaras J (2013) Using small-angle neutron scattering to detect nanoscopic lipid domains. Chem Phys Lipids 170–171:19–32

    Article  PubMed  CAS  Google Scholar 

  • Pandit KR, Klauda JB (2012) Membrane models of E. coli containing cyclic moieties in the aliphatic lipid chain. Biochim Biophys Acta Biomembr 1818:1205–1210

    Article  CAS  Google Scholar 

  • Pastor RW (1994) Molecular dynamics and Monte Carlo simulations of lipid bilayers. Curr Opin Struct Biol 4:486–492

    Article  CAS  Google Scholar 

  • Pendse PY, Brooks BR, Klauda JB (2010) Probing the periplasmic-open state of lactose permease in response to sugar binding and proton translocation. J Mol Biol 404:506–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A (1964) Correlations in the motion of atoms in liquid argon. Phys Rev 136:A405–A411

    Article  Google Scholar 

  • Riccardi D, Yang S, Cui Q (2010) Proton transfer function of carbonic anhydrase: insights from QM/MM simulations. Biochim Biophys Acta (BBA) – Proteins Proteomics 1804:342–351

    Article  CAS  Google Scholar 

  • Risselada HJ, Marrink SJ (2008) The molecular face of lipid rafts in model membranes. Proc Natl Acad Sci 105:17367–17372

    Article  CAS  PubMed  Google Scholar 

  • Schuler LD, Daura X, Van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218

    Article  CAS  Google Scholar 

  • Shi Q, Voth GA (2005) Multi-scale modeling of phase separation in mixed lipid bilayers. Biophys J 89:2385–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Q, Izvekov S, Voth GA (2006) Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J Phys Chem B 110:15045–15048

    Article  CAS  PubMed  Google Scholar 

  • Shinoda W, DeVane R, Klein ML (2010) Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. J Phys Chem B 114:6836–6849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  • Snow CD, Sorin EJ, Rhee YM, Pande VS (2005) How well can simulation predict protein folding kinetics and thermodynamics? Annu Rev Biophys Biomol Struct 34:43–69

    Article  CAS  PubMed  Google Scholar 

  • Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E (2014) The molecular structure of the liquid-ordered phase of lipid bilayers. J Am Chem Soc 136:725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sodt AJ, Pastor RW, Lyman E (2015) Hexagonal substructure and hydrogen bonding in liquid-ordered phases containing palmitoyl sphingomyelin. Biophys J 109:948–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stansfeld Phillip J, Sansom Mark SP (2011) Molecular simulation approaches to membrane proteins. Structure 19:1562–1572

    Article  CAS  PubMed  Google Scholar 

  • Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  • Sun R, Dama JF, Tan JS, Rose JP, Voth GA (2016) Transition-tempered metadynamics is a promising tool for studying the permeation of drug-like molecules through membranes. J Chem Theory Comput 12:5157–5169

    Article  CAS  PubMed  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  CAS  Google Scholar 

  • Terama E, Ollila OHS, Salonen E, Rowat AC, Trandum C, Westh P, Patra M, Karttunen M, Vattulainen I (2008) Influence of ethanol on lipid membranes: from lateral pressure profiles to dynamics and partitioning. J Phys Chem B 112:4131–4139

    Article  CAS  PubMed  Google Scholar 

  • van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ (2015) Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim Biophys Acta Biomembr 1848:1319–1330

    Article  CAS  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venable RM, Zhang YH, Hardy BJ, Pastor RW (1993) Molecular-dynamics simulations of a lipid bilayer and of hexadecane – an investigation of membrane fluidity. Science 262:223–226

    Article  CAS  PubMed  Google Scholar 

  • Venable RM, Brooks BR, Pastor RW (2000) Molecular dynamics simulations of gel (LβI) phase lipid bilayers in constant pressure and constant surface area ensembles. J Chem Phys 112:4822–4832

    Article  CAS  Google Scholar 

  • Venable RM, Sodt AJ, Rogaski B, Rui H, Hatcher E, MacKerell AD, Pastor RW, Klauda JB (2014) CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature. Biophys J 107:134–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villanueva DY, Lim JB, Klauda JB (2013) Influence of ester-modified lipids on bilayer structure. Langmuir 29:14196–14203

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Markwick PRL, de Oliveira CAF, McCammon JA (2011) Enhanced lipid diffusion and mixing in accelerated molecular dynamics. J Chem Theory Comput 7:3199–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong-ekkabut J, Xu Z, Triampo W, Tang IM, Peter Tieleman D, Monticelli L (2007) Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J 93:4225–4236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Emilia L, Engström O, Jo S, Stuhlsatz D, Yeom Min S, Klauda Jeffery B, Widmalm G, Im W (2013) Molecular dynamics and NMR spectroscopy studies of E. coli lipopolysaccharide structure and dynamics. Biophys J 105:1444–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Emilia L, Fleming Patrick J, Yeom Min S, Widmalm G, Klauda Jeffery B, Fleming Karen G, Im W (2014) E. coli outer membrane and interactions with OmpLA. Biophys J 106:2493–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu EL, Cheng X, Jo S, Rui H, Song KC, Lee J, Davila-Contreras EM, Beaven AH, Monje-Galvan V, Venable RM, Klauda JB, Im W (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda T, Kinoshita M, Murata M, Matsumori N (2014) Detailed comparison of deuterium quadrupole profiles between sphingomyelin and phosphatidylcholine bilayers. Biophys J 106:631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111:5944–5972

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Polyansky A, Buck M (2015) Modeling transmembrane domain dimers/trimers of plexin receptors: implications for mechanisms of signal transmission across the membrane. PLoS One 10:e0121513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Some of the research presented here and time spent on writing this work was supported by the NSF grant MCB-1149187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery B. Klauda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khakbaz, P., Monje-Galvan, V., Zhuang, X., Klauda, J.B. (2019). Modeling Lipid Membranes. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50430-8_52

Download citation

Publish with us

Policies and ethics