Skip to main content

Synthesis of Acetyl-CoA from Carbon Dioxide in Acetogenic Bacteria

  • Reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Bacterial species, which are able to fix CO2 + H2 as only carbon and energy source to acetyl-CoA and further to acetate, are called acetogens. The pathway acetogenic bacteria possess is the linear, two-branched reductive acetyl-CoA pathway (Wood-Ljungdahl pathway), which they not only use to fix CO2 + H2 and/or CO to acetyl-CoA and further to acetate but also for redox balancing when growing on other carbon substrates. Reduction of CO2 to acetate does not leave acetogens with any additional energy in form of ATP for their anabolism. In order to overcome these energetic constraints, acetogens possess additional membrane complexes which couple the electron transfer from reduced ferredoxin to H+ or NAD+ to a proton or sodium ion gradient across the membrane, which in turn can be used by a proton- or sodium ion-dependent ATP synthase for energy conservation. Since acetogens are able to live autotrophically by using H2 + CO2, they are considered to be valuable tools for the fixation of greenhouse gases. Genetic modifications together with fermentative studies have converted these living artists to strong work horses for production of biofuels and synthetic compounds that help to prevent further global warming and the exploitation of our planet’s fossil fuels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   489.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrini J, Naveau H, Nyns E-J (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351

    Article  CAS  Google Scholar 

  • Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 25:175–243

    Article  CAS  Google Scholar 

  • Barquera B (2014) The sodium pumping NADH:quinone oxidoreductase (Na+-Nqr), a unique redox-driven ion pump. J Bioenerg Biomembr 46:289–298

    Article  CAS  Google Scholar 

  • Basen M, Müller V (2016) “Hot” acetogenesis. Extremophiles 21:15–26

    Article  Google Scholar 

  • Basen M, Schut GJ, Nguyen DM, Lipscomb GL, Benn RA, Prybol CJ, Vaccaro BJ, Poole FL, Kelly RM, Adams MWW (2014) Single gene insertion drives bioalcohol production by a thermophilic archaeon. Proc Natl Acad Sci USA 111:17618–17623

    Article  CAS  Google Scholar 

  • Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci USA 112:14518–14521

    Article  CAS  Google Scholar 

  • Bertsch J, Müller V (2015a) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuels 8:210

    Article  Google Scholar 

  • Bertsch J, Müller V (2015b) CO metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol 81:5949–5956

    Article  CAS  Google Scholar 

  • Bertsch J, Öppinger C, Hess V, Langer JD, Müller V (2015) Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii. J Bacteriol 197:1681–1689

    Article  CAS  Google Scholar 

  • Biegel E, Müller V (2010) Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci USA 107:18138–18142

    Article  CAS  Google Scholar 

  • Biegel E, Schmidt S, Müller V (2009) Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen Acetobacterium woodii. Environ Microbiol 11:1438–1443

    Article  CAS  Google Scholar 

  • Biegel E, Schmidt S, Gonzalez JM, Müller V (2011) Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 68:613–634

    Article  CAS  Google Scholar 

  • Brandt K, Müller V (2015) Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance. Biol Chem 396:1031–1042

    Article  CAS  Google Scholar 

  • Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293

    Article  CAS  Google Scholar 

  • Cotter JL, Chinn MS, Grunden AM (2009) Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzym Microb Technol 44:281–288

    Article  CAS  Google Scholar 

  • Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471

    Article  CAS  Google Scholar 

  • Das A, Ljungdahl LG (1997) Composition and primary structure of the F1F0 ATP synthase from the obligately anaerobic bacterium Clostridium thermoaceticum. J Bacteriol 179:3746–3755

    Article  CAS  Google Scholar 

  • Diender M, Stams AJ, Sousa DZ (2016) Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas. Biotechnol Biofuels 9:82

    Article  Google Scholar 

  • Drake HL, Gossner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128

    Article  CAS  Google Scholar 

  • Fontaine FE, Peterson WH, Mccoy E, Johnson MJ, Ritter GJ (1942) A new type of glucose fermentation by Clostridium thermoaceticum nov. sp. J Bacteriol 43:701–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, Luderer G, Raupach MR, Schaeffer M, Van Vuuren DP, Le Quere C (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geosci 7:709–715

    Article  CAS  Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Lett 39:181–213

    Article  CAS  Google Scholar 

  • Furdui C, Ragsdale SW (2000) The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway. J Biol Chem 275:28494–28499

    Article  CAS  Google Scholar 

  • Groher A, Weuster-Botz D (2016) Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation. J Biotechnol 228:82–94

    Article  CAS  Google Scholar 

  • He Y, Li M, Perumal V, Feng X, Fang J, Xie J, Sievert SM, Wang F (2016) Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum bathyarchaeota widespread in marine sediments. Nat Microbiol 1:16035

    Article  CAS  Google Scholar 

  • Hedderich R, Forzi L (2005) Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol 10:92–104

    Article  CAS  Google Scholar 

  • Hess V, Schuchmann K, Müller V (2013) The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem 288:31496–32502

    Article  CAS  Google Scholar 

  • Hess V, Poehlein A, Weghoff MC, Daniel R, Müller V (2014) A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui. BMC Genomics 15:1139

    Article  Google Scholar 

  • Hess V, Gallegos R, Jones JA, Barquera B, Malamy MH, Müller V (2016) Occurrence of ferredoxin:NAD(+) oxidoreductase activity and its ion specificity in several Gram-positive and Gram-negative bacteria. PeerJ 4:e1515

    Article  Google Scholar 

  • Hoffmeister S, Gerdom M, Bengelsdorf FR, Linder S, Fluchter S, Ozturk H, Blumke W, May A, Fischer RJ, Bahl H, Dürre P (2016) Acetone production with metabolically engineered strains of Acetobacterium woodii. Metab Eng 36:37–47

    Article  CAS  Google Scholar 

  • Hreha TN, Mezic KG, Herce HD, Duffy EB, Bourges A, Pryshchep S, Juarez O, Barquera B (2015) Complete topology of the Rnf complex from Vibrio cholerae. Biochemistry 54:2443–2455

    Article  CAS  Google Scholar 

  • Huang H, Wang S, Moll J, Thauer RK (2012) Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2. J Bacteriol 194:3689–3699

    Article  CAS  Google Scholar 

  • Huang H, Chai C, Li N, Rowe P, Minton NP, Yang S, Jiang W, Gu Y (2016) CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol. (in press). https://doi.org/10.1021/acssynbio.6b00044

    Article  CAS  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamlage B, Gruhl B, Blaut M (1997) Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides. Appl Environ Microbiol 63:1732–1738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneuchi C, Benno Y, Mitsuoka T (1976) Clostridium coccoides, a new species from the feces of mice. Int J Syst Evol Microbiol 26:482–486

    Google Scholar 

  • Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107:13087–13092

    Article  Google Scholar 

  • Köpke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77:5467–5475

    Article  Google Scholar 

  • Li LF, Ljungdahl L, Wood HG (1966) Properties of nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum. J Bacteriol 92:405–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M (2016) Gas fermentation-a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7:694

    Article  Google Scholar 

  • Ljungdahl L, Wood H (1969) Total synthesis of acetate from co2 by heterotrophic bacteria. Annu Rev Microbiol 23:515–538

    Article  CAS  Google Scholar 

  • Martin WF, Sousa FL (2016) Early microbial evolution: the age of anaerobes. Cold Spring Harb Perspect Biol 8:a018127

    Article  Google Scholar 

  • Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Micro 6:805–814

    Article  CAS  Google Scholar 

  • Matthies D, Zhou W, Klyszejko AL, Anselmi C, Yildiz Ö, Brandt K, Müller V, Faraldo-Gómez JD, Meier T (2014) High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na+-coupled ATP synthase. Nat Commun 5:5286

    Article  Google Scholar 

  • Minton NP, Ehsaan M, Humphreys CM, Little GT, Baker J, Henstra AM, Liew F, Kelly ML, Sheng L, Schwarz K, Zhang Y (2016) A roadmap for gene system development in Clostridium. Anaerobe 41:104–112

    Article  CAS  Google Scholar 

  • Mock J, Wang S, Huang H, Kahnt J, Thauer RK (2014) Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica. J Bacteriol 196:3303–3314

    Article  Google Scholar 

  • Mock J, Zheng Y, Müller AP, Ly S, Tran L, Segovia S, Nagaraju S, Köpke M, Dürre P, Thauer RK (2015) Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J Bacteriol 197:2965–2980

    Article  CAS  Google Scholar 

  • Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69:6345–6353

    Article  Google Scholar 

  • Müller V, Aufurth S, Rahlfs S (2001) The Na+ cycle in Acetobacterium woodii: Identification and characterization of a Na+ translocating F1F0-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids. Biochim Biophys Acta 1505:108–120

    Article  Google Scholar 

  • O’Brien WE, Brewer JM, Ljungdahl LG (1973) Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J Biol Chem 248:403–408

    PubMed  Google Scholar 

  • Poehlein A, Schmidt S, Kaster A-K, Goenrich M, Vollmers J, Thürmer A, Bertsch J, Schuchmann K, Voigt B, Hecker M, Daniel R, Thauer RK, Gottschalk G, Müller V (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS ONE 7:e33439

    Article  CAS  Google Scholar 

  • Ragsdale SW (2003) Pyruvate:ferredoxin oxidoreductase and its radical intermediate. Chem Rev 103:2333–2346

    Article  CAS  Google Scholar 

  • Ragsdale SW (2008) Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136

    Article  CAS  Google Scholar 

  • Schlegel K, Welte C, Deppenmeier U, Müller V (2012) Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex. Febs J 279:4444–4452

    Article  CAS  Google Scholar 

  • Schuchmann K, Müller V (2012) A bacterial electron-bifurcating hydrogenase. J Biol Chem 287:31165–31171

    Article  CAS  Google Scholar 

  • Schuchmann K, Müller V (2013) Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342:1382–1385

    Article  CAS  Google Scholar 

  • Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12:809–821

    Article  CAS  Google Scholar 

  • Schuchmann K, Müller V (2016) Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol 82:4056–4069

    Article  CAS  Google Scholar 

  • Sojo V, Herschy B, Whicher A, Camprubi E, Lane N (2016) The origin of life in alkaline hydrothermal vents. Astrobiology 16:181–197

    Article  CAS  Google Scholar 

  • Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Evol Microbiol 43:232–236

    CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay P-L, Zhang T, Dar SA, Leang C, Lovley DR (2013) The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. mBio 4:e00406

    CAS  Google Scholar 

  • Weghoff MC, Bertsch J, Müller V (2015) A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 17:670–677

    Article  CAS  Google Scholar 

  • Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116. https://doi.org/10.1038/nmicrobiol.2016.116

    Article  CAS  PubMed  Google Scholar 

  • Wieringa KT (1936) Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden. Antonie van Leeuwenhoek 3:263–273

    Article  Google Scholar 

  • Wieringa KT (1939) The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie Leeuwenhoek J Microbiol Serol 6:251–262

    Article  Google Scholar 

  • Wood HG (1952) A study of carbon dioxide fixation by mass determination of the types of C13-acetate. J Biol Chem 194:905–931

    CAS  PubMed  Google Scholar 

  • Wood HG, Ragsdale SW, Pezacka E (1986) The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol Lett 39:345–362

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work of the authors’ laboratory is supported by grants from the Deutsche Forschungsgemeinschaft and the Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wiechmann, A., Müller, V. (2019). Synthesis of Acetyl-CoA from Carbon Dioxide in Acetogenic Bacteria. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50430-8_4

Download citation

Publish with us

Policies and ethics