Skip to main content

Potential for Microbial Interventions to Reduce Global Warming

  • Reference work entry
  • First Online:
Aerobic Utilization of Hydrocarbons, Oils, and Lipids

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

The identity, atmospheric concentrations, lifetimes, and radiative forcing potentials of the biogenic, anthropogenic, and atmospheric “greenhouse gases” primarily responsible for global warming and consequent climate change are described. Possible and actual microbiological processes which might reduce the atmospheric burden of carbon dioxide and methane are considered, and the uncertainties both of the feasibility of such processes and of the hypotheses underpinning them are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Buffett B (2004) Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth Planet Sci Lett 227:185–199

    Article  CAS  Google Scholar 

  • Cai Y, Yan Z, Bodelier PLE, Conrad R, Jia Z (2016) Conventional methanotrophs are responsible for methane oxidation in paddy soils. Nat Commun 7:11728

    Article  CAS  Google Scholar 

  • Coale KH et al (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–501.18

    Article  CAS  Google Scholar 

  • Dickens GR, Castillo RM, Walker JCG (1997) A blast of gas in the late Paleocene: simulating first order effects of massive dissociation of oceanic methane hydrates. Geology 25:259–262

    Article  CAS  Google Scholar 

  • EIA (2016) Climate change indicators: greenhouse gases. https://www.epa.gov/climate-indicators/greenhouse-gases. Retrieved 28 Oct 2016

  • Ettwig KF et al (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173

    Article  CAS  Google Scholar 

  • Fonty G, Joblin K, Chavarot M, Roux R, Naylor G, Michallon F (2007) Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs. Appl Environ Microbiol 73:6391–6403

    Article  CAS  Google Scholar 

  • Harper DB, Hamilton JTG (2003) The global cycles of the naturally-occurring monohalomethanes. In: Natural production of organohalogen compounds, The handbook of environmental chemistry, vol 3P. Springer, Berlin, pp 17–41

    Chapter  Google Scholar 

  • Henckel T, Jäckel U, Schnell S, Conrad R (2000) Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl Environ Microbiol 66:1801–1808

    Article  CAS  Google Scholar 

  • Holmes AJ, Roslev P, McDonald IR, Iverson N, Henriksen K, Murrell JC (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65:3312–3318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hulme M (2008) The star wars solution to climate change that will crash back to earth. Times Higher Education, 26 June 2008, pp 24–25

    Google Scholar 

  • IAEA (2008) Belching ruminants, a minor player in atmospheric methane. Joint FAO/IAEA Programme: nuclear techniques in food and agriculture. http://www-naweb.iaea.org/nafa/aph/stories/2008-atmospheric-methane.html. Retrieved 14 May 2009

  • IPCC (2007) Historical overview of climate change science. Intergovernmental Panel on Climate Change, WG1 AR4 Report, p 97

    Google Scholar 

  • Iqbal MF, Cheng Y-F, Zhu W-Y, Zeshan B (2008) Mitigation of ruminant methane production: current strategies, constraints and future options. World J Microbiol Biotechnol 24:2747–2755

    Article  CAS  Google Scholar 

  • Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A, DeLong EF (2008) Aerobic production of methane by the sea. Nat Geosci 1:473–478

    Article  CAS  Google Scholar 

  • Kelly DP (1996) A global perspective on sources and sinks of biogenic trace gases: an atmospheric system driven by microbiology. In: Murrell JC, Kelly DP (eds) Microbiology of atmospheric trace gases. Sources, sinks and global change processes, NATO ASI series I, vol 39. Springer, Berlin, pp 1–16

    Google Scholar 

  • Kelly DP, Malin G, Wood AP (1993) Microbial transformations and biogeochemical cycling of one-carbon substrates containing sulphur, nitrogen or halogens. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Intercept Ltd, Andover, pp 47–63

    Google Scholar 

  • Kelly DP et al (1996) Working group 2: global environmental change. In: Murrell JC, Kelly DP (eds) Microbiology of atmospheric trace gases. Sources, sinks and global change processes, NATO ASI series I, vol 39. Springer, Berlin, pp 261–270

    Google Scholar 

  • Kvenvolden K (1993) Methane hydrates and global climate. Glob Biogeochem Cycles 3:221–229

    Google Scholar 

  • Kvenvolden KA (1998) A primer on the geological occurrence of gas hydrate. Geol Soc Lond Spec Publ 137:9–30

    Article  CAS  Google Scholar 

  • Kvenvolden KA, Collett TS, Lorensen TD (1988) Studies on permafrost and gas-hydrates as possible sources of atmospheric methane at high latitudes. In: Oremland RS (ed) Biogeochemistry of global change. Radiatively active trace gases. Chapman & Hall, New York, pp 487–501

    Google Scholar 

  • Lee JM et al (1995) Observed stratospheric profiles and stratospheric lifetimes of HCFC-141b and HCFC-142b. Geophys Res Lett 22:1369–1372

    Article  CAS  Google Scholar 

  • Macdonald GJ (1990) Role of methane clathrates in past and future climates. Clim Chang 16:247–281

    Article  Google Scholar 

  • Manley SL, Goodwin K, North WJ (1992) Laboratory production of bromoform, methylene bromide and methyl iodide by macroalgae and distribution in near-shore California waters. Limnol Oceanogr 37:1652–1659

    Article  CAS  Google Scholar 

  • Martin JH et al (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129

    Article  CAS  Google Scholar 

  • Matsumato R (1995) Causes of the δ 13C anomalies of carbonates and a new paradigm “gas hydrate hypothesis”. J Geol Soc Jpn 101:902–924

    Article  Google Scholar 

  • McCarty PL, Reinhard M (1993) Biological and chemical transformations of halogenated aliphatic compounds in aquatic and terrestrial environments. In: Oremland RS (ed) Biogeochemistry of global change. Radiatively active trace gases. Chapman & Hall, New York, pp 839–852

    Chapter  Google Scholar 

  • Moss AR, Jouany J-P, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann Zootech 49:231–253

    Article  CAS  Google Scholar 

  • Nouchi I, Mariko S (1993) Mechanism of methane transport by rice plants. In: Oremland RS (ed) Biogeochemistry of global change. Radiatively active trace gases. Chapman & Hall, New York, pp 336–352

    Chapter  Google Scholar 

  • O’Mara F (2004) Greenhouse gas production from dairying: reducing methane production. Adv Dairy Technol 16:295–309

    Google Scholar 

  • Oremland RS (1993) Aspects of the biogeochemistry of methane in Mono Lake and the Mono Basin of California. In: Oremland RS (ed) Biogeochemistry of global change. Radiatively active trace gases. Chapman & Hall, New York, pp 704–741

    Chapter  Google Scholar 

  • Oremland RS (1996) Microbial degradation of atmospheric halocarbons. In: Murrell JC, Kelly DP (eds) Microbiology of atmospheric trace gases. Sources, sinks and global change processes, NATO ASI series I, vol 39. Springer, Berlin, pp 85–101

    Chapter  Google Scholar 

  • Portnoy A, Vadakkepuliyambatta S, Mienert J, Hubbard A (2016) Ice-sheet-driven methane storage and release in the Arctic. Nat Commun 7:10314

    Article  Google Scholar 

  • Qin D (2007) Decline in concentrations of chlorofluorocarbons (CFC-11, CFC-12 and CFC-113) in an urban area of Beijing, China. Atmos Environ 41:8424–8430

    Article  CAS  Google Scholar 

  • Raynaud D et al (2000) The ice core record of greenhhouse gases: a view in the context of future changes. Quat Sci Rev 19:9–17

    Google Scholar 

  • Raynaud D (1993) Ice core records as a key to understanding the history of atmospheric trace gases. In: Oremland RS (ed) Biogeochemistry of global change. Radiatively active trace gases. Chapman & Hall, New York, pp 29–45

    Chapter  Google Scholar 

  • Sergienko VI et al (2012) The degradation of submarine permafrost and the destruction of hydrates on the shelf of east arctic seas as a potential cause of the methane catastrophe: some results of integrated studies in 2011. Dokl Earth Sci 446:1132–1137

    Article  CAS  Google Scholar 

  • Shakhova N, Seemiletov I, Salyuk A, Kosmach D, Bel’cheva N (2007) Methane release on the Arctic East Siberian shelf. Geophys Res Abstr 9:01071

    Google Scholar 

  • Shakhova N, Seemiletov I, Salyuk A, Kosmach D (2008) Anomalies of methane in the atmosphere over the East Siberian shelf: is there any sign of methane leakage from shallow shelf hydrates? Geophys Res Abstr 10:01526

    Google Scholar 

  • Shakhova N et al (2010) Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf. Dokl Earth Sci 327:1246–1250

    CAS  Google Scholar 

  • Sidebotham H, Franklin J (1996) Atmospheric fate and impact of hydrochlorofluorocarbons and chlorinated solvents. Pure Appl Chem 68:1757–1769

    Article  Google Scholar 

  • Strous M, Jetten MSM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58:99–117

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1995) Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar Chem 50:189–206

    Article  CAS  Google Scholar 

  • Tedeschi LO, Fox DG, Tylutki TP (2003) Potential environmental benefits of ionophores in ruminant diets. J Environ Qual 32:1591–1602

    Article  CAS  Google Scholar 

  • Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci 1125:158–170

    Article  CAS  Google Scholar 

  • UNEP (1987) Montreal protocol on substances that deplete the ozone layer. UNEP Service No. 87–6106

    Google Scholar 

  • UNEP (2003) Handbook for the international treaties for the protection of the ozone layer. UNEP, New York

    Google Scholar 

  • Wartiainen I, Hesnes AG, Svenning MM (2003) Methanotroph diversity in high arctic wetlands on the island of Svalbard (Norway). Can J Microbiol 49:602–612

    Article  Google Scholar 

  • Wever R (1991) Formation of halogenated gases by natural sources. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and halomethanes. American Society for Microbiology, Washington, DC, pp 277–285

    Google Scholar 

  • Wever R (1993) Sources and sinks of halogenated methanes in nature. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Intercept Ltd, Andover, pp 35–45

    Google Scholar 

  • Yokouchi Y et al (2000) A strong source of methyl chloride to the atmosphere from tropical coastal land. Nature 403:295–298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donovan P. Kelly or Ann P. Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kelly, D.P., Wood, A.P. (2019). Potential for Microbial Interventions to Reduce Global Warming. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50418-6_49

Download citation

Publish with us

Policies and ethics