Skip to main content

Global Aerobic Degradation of Hydrocarbons in Aquatic Systems

  • Reference work entry
  • First Online:
  • 1455 Accesses

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Gaseous and liquid petroleum hydrocarbons are ubiquitous in the global marine environment either as a consequence of natural inputs or via anthropogenic contamination. Specific microorganisms have the ability to utilize hydrocarbons as carbon and energy sources under both oxic and anoxic conditions. Hydrocarbon biodegradation is therefore highly beneficial as this process impacts the fate of hydrocarbons and moderates risks posed to humans and the environment by hydrocarbon exposure. This chapter describes the current knowledge of aerobic microbial hydrocarbon degradation in aqueous environments, focusing on the largest of Earth’s aquatic ecosystems – the marine environment. Natural gas and oil seeps and two major spill scenarios, the Deepwater Horizon blowout and the Prestige vessel disaster, are presented to describe how hydrocarbon-degrading microorganisms respond to slow diffusive natural discharges and to large anthropogenic pollution events. Future research challenges discussed include the development of approaches and strategies to assess aerobic microbial hydrocarbon degradation on a global scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aeppli C, Carmichael CA, Nelson RK, Lemkau KL, Graham WM, Redmond MC, Valentine DL, Reddy CM (2012) Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environ Sci Technol 46:8799–8807

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Gutiérrez J, Figueras A, Albaigés J, Jiménez N, Viñas M, Solanas AM, Novoa B (2009) Bacterial communities from shoreline environments (Costa da Morte, Northwestern Spain) affected by the Prestige oil spill. Appl Environ Microbiol 75:3407–3418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • An YJ (2004) Toxicity of benzene, toluene, ethylbenzene, and xylene (BTEX) mixtures to Sorghum bicolor and Cucumis sativus. Bull Environ Contam Toxicol 72:1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM (1995) Bioremediation of petroleum pollutants. Int Biodeter Biodegr 35:317–327

    Article  CAS  Google Scholar 

  • Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorous. Biotechnol Bioeng 14:309–318

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas RM, Horowitz A, Krichevsky M, Bej AK (1991) Response of microbial populations to environmental disturbance. Microb Ecol 22:249–256

    Article  CAS  PubMed  Google Scholar 

  • Bargiela R, Herbst FA, Martinez-Martinez M, Seifert J, Rojo D, Cappello S, Genovese M, Crisafi F, Denaro R, Chernikova TN, Barbas C, von Bergen M, Yakimov MM, Ferrer M, Golyshin PN (2015) Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation. Proteomics 15:3508–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birch LD, Bachofen R (1988) Microbial production of hydrocarbons. In: Rehm HJ, Reed G (eds) Biotechnology – special microbial processes. VCH Verlagsgesellschaft, Weinheim, pp 71–99

    Google Scholar 

  • Bringel F, Couée I (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 6:486

    Article  PubMed  PubMed Central  Google Scholar 

  • Camilli R, Reddy CM, Yoerger DR, Van Mooy BA, Jakuba MV, Kinsey JC (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330:201–204

    Article  CAS  PubMed  Google Scholar 

  • Chanton J, Zhao T, Rosenheim BE, Joye S, Bosman S, Brunner C, Yeager KM, Diercks AR, Hollander D (2015) Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the Deepwater Horizon oil spill. Environ Sci Technol 49:847–854

    Article  CAS  PubMed  Google Scholar 

  • Coulon F, Pelletier E, Gourhant L, Delille D (2005) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere 58:1439–1448

    Article  CAS  PubMed  Google Scholar 

  • Cozzarelli IM, Herman JS, Baedecker MJ (1995) Fate of microbial metabolites of hydrocarbons in a coastal plain aquifer: the role of electron acceptors. Environ Sci Technol 29:458–469

    Article  CAS  PubMed  Google Scholar 

  • de la Huz R, Lastra M, Junoy J, Castellanos C, Viéitez JM (2005) Biological impacts of oil pollution and cleaning in the intertidal zone of exposed sandy beaches: preliminary study of the “Prestige” oil spill. Estuar Coast Shelf Sci 65:19–29

    Article  CAS  Google Scholar 

  • D’souza NA, Subramaniam A, Juhl AR, Hafez M, Chekalyuk A, Phan S, Yan B, MacDonald IR, Weber SC, Montoya JP (2016) Elevated surface chlorophyll associated with natural oil seeps in the Gulf of Mexico. Nat Geosci 9:215–218

    Article  CAS  Google Scholar 

  • Diercks A-R, Highsmith RC, Asper VL, Joung D, Zhou Z, Guo L, Shiller AM, Joye SB, Teske AP, Guinasso N, Wade TL, Lohrenz SE (2010) Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site. Geophys Res Lett 37:L20602

    Article  CAS  Google Scholar 

  • Diez S, Sabatte J, Vinas M, Bayona JM, Solanas AM, Albaiges J (2005) The Prestige oil spill. I. Biodegradation of a heavy fuel oil under simulated conditions. Environ Toxicol Chem 24:2203–2217

    Article  CAS  PubMed  Google Scholar 

  • Dombrowski N, Donaho JA, Gutierrez T, Seitz KW, Teske AP, Baker BJ (2016) Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol. https://doi.org/10.1038/nmicrobiol.2016.57

    Article  PubMed  Google Scholar 

  • Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, Piceno YM, Reid FC, Stringfellow WT, Tom LM, Hazen TC, Andersen GL (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47:10860–10867

    Article  CAS  PubMed  Google Scholar 

  • Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123

    Article  CAS  PubMed  Google Scholar 

  • Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, Sogin ML (2013) Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 4:1111–1119

    Article  PubMed Central  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  CAS  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9:803–816

    Article  CAS  PubMed  Google Scholar 

  • Gagic D, Maclean PH, Li D, Attwood GT, Moon CD (2015) Improving the genetic representation of rare taxa within complex microbial communities using DNA normalization methods. Mol Ecol Resour 15:464–476

    Article  CAS  PubMed  Google Scholar 

  • Golyshin PN, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911

    CAS  PubMed  Google Scholar 

  • Gray JL, Kanagy LK, Furlong ET, Kanagy CJ, McCoy JW, Mason A, Lauenstein G (2014) Presence of the Corexit component dioctyl sodium sulfosuccinate in Gulf of Mexico waters after the 2010 Deepwater Horizon oil spill. Chemosphere 95:124–130

    Article  CAS  PubMed  Google Scholar 

  • Gunnison D, Alexander M (1975) Basis for the resistance of several algae to microbial decomposition. Appl Microbiol 29:729–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez T, Nichols PD, Whitman WB, Aitken MD (2012) Porticoccus hydrocarbonoclasticus sp. nov., an aromatic hydrocarbon-degrading bacterium identified in laboratory cultures of marine phytoplankton. Appl Environ Microbiol 78:628–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez T, Rhodes G, Mishamandani S, Berry D, Whitman WB, Nichols PD, Semple KT, Aitken MD (2014) Polycyclic aromatic hydrocarbon degradation of phytoplankton-associated Arenibacter spp. and description of Arenibacter algicola sp. nov., an aromatic hydrocarbon-degrading bacterium. Appl Environ Microbiol 80:618–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hambrick GA, DeLaune RD, Patrick WH (1980) Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation. Appl Environ Microbiol 40:365–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman H-YN, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208

    Article  CAS  PubMed  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  CAS  PubMed  Google Scholar 

  • Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473

    Article  CAS  Google Scholar 

  • Heipieper HJ, Martínez PM (2010) Toxicity of hydrocarbons to microorganisms. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1563–1573

    Chapter  Google Scholar 

  • Jiménez N, Viñas M, Sabaté J, Díez S, Bayona JM, Solanas AM, Albaiges J (2006) The Prestige oil spill. 2. Enhanced biodegradation of a heavy fuel oil under field conditions by the use of an oleophilic fertilizer. Environ Sci Technol 40:2578–2585

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen BB, Revsbech NP (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus1. Limnol Oceanogr 30:111–122

    Article  Google Scholar 

  • Joye SB (2015) Deepwater Horizon, 5 years on. Science 349:592–593

    Article  CAS  PubMed  Google Scholar 

  • Joye SB, MacDonald IR, Leifer I, Asper V (2011) Magnitude and oxidation potential of hydrocarbon gases released from the BP oil well blowout. Nat Geosci 4:160–164

    Article  CAS  Google Scholar 

  • Joye SB, Bracco A, Özgökmen TM, Chanton JP, Grosell M, MacDonald IR, Cordes EE, Montoya JP, Passow U (2016) The Gulf of Mexico ecosystem, six years after the Macondo oil well blowout. Deep-Sea Res Pt II 129:4–19

    Article  Google Scholar 

  • Kleindienst S, Ramette A, Amann R, Knittel K (2012) Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol 14:2689–2710

    Article  CAS  PubMed  Google Scholar 

  • Kleindienst S, Herbst F-A, Stagars M, von Netzer F, von Bergen M, Seifert J, Peplies J, Amann R, Musat F, Lueders T, Knittel K (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8:2029–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros PM, Joye SB (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci USA 112:14900–14905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleindienst S, Grim S, Sogin M, Bracco A, Crespo-Medina M, Joye SB (2016) Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME J 10:400–415

    Article  PubMed  Google Scholar 

  • Kujawinski EB, Kido Soule MC, Valentine DL, Boysen AK, Longnecker K, Redmond MC (2011) Fate of dispersants associated with the Deepwater Horizon oil spill. Environ Sci Technol 45:1298–1306

    Article  CAS  PubMed  Google Scholar 

  • Lam P, Kuypers MMM (2011) Microbial nitrogen cycling processes in oxygen minimum zones. Annu Rev Mar Sci 3:317–345

    Article  Google Scholar 

  • Lamendella R, Strutt S, Borglin SE, Chakraborty R, Tas N, Mason OU, Hultman J, Prestat E, Hazen TC, Jansson J (2014) Assessment of the Deepwater Horizon oil spill impact on Gulf coast microbial communities. Front Microbiol 5

    Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lea-Smith DJ, Biller SJ, Davey MP, Cotton CAR, Perez Sepulveda BM, Turchyn AV, Scanlan DJ, Smith AG, Chisholm SW, Howe CJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci USA 112:13591–13596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loureiro ML, Loomis JB, Vázquez MX (2009) Economic valuation of environmental damages due to the Prestige oil spill in Spain. Environ Resour Econ 44:537–553

    Article  Google Scholar 

  • Luff R, Wallmann K (2003) Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochim Cosmochim Acta 67:3403–3421

    Article  CAS  Google Scholar 

  • Lynch MD, Bartram AK, Neufeld JD (2012) Targeted recovery of novel phylogenetic diversity from next-generation sequence data. ISME J 6:2067–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald JA (2000) Peer reviewed: evaluating natural attenuation for groundwater cleanup. Environ Sci Technol 34:346A–353A

    Article  CAS  PubMed  Google Scholar 

  • MacDonald IR, Garcia-Pineda O, Beet A, Daneshgar Asl S, Feng L, Graettinger G, French-McCay D, Holmes J, Hu C, Huffer F, Leifer I, Muller-Karger F, Solow A, Silva M, Swayze G (2015) Natural and unnatural oil slicks in the Gulf of Mexico. J Geophys Res 120:8364–8380

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  PubMed  Google Scholar 

  • Marozava S, Roling WF, Seifert J, Kuffner R, von Bergen M, Meckenstock RU (2014) Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part I. Batch cultivation with excess of carbon sources. Syst Appl Microbiol 37:277–286

    Article  CAS  PubMed  Google Scholar 

  • Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Han J, Holman HY, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6:1715–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNutt MK, Camilli R, Crone TJ, Guthrie GD, Hsieh PA, Ryerson TB, Savas O, Shaffer F (2012) Review of flow rate estimates of the Deepwater Horizon oil spill. Proc Natl Acad Sci USA 109:20260–20267

    Article  PubMed  Google Scholar 

  • Medina-Bellver JI, Marin P, Delgado A, Rodriguez-Sanchez A, Reyes E, Ramos JL, Marques S (2005) Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environ Microbiol 7:773–779

    Article  CAS  PubMed  Google Scholar 

  • Mishamandani S, Gutierrez T, Berry D, Aitken MD (2016) Response of the bacterial community associated with a cosmopolitan marine diatom to crude oil shows a preference for the biodegradation of aromatic hydrocarbons. Environ Microbiol 18:1817–1833

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Roy P (2011) BTEX: a serious ground-water contaminant. Res J Environ Sci 5:394–398

    Article  CAS  Google Scholar 

  • Mulet M, David Z, Nogales B, Bosch R, Lalucat J, García-Valdés E (2011) Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill. Appl Environ Microbiol 77:1076–1085

    Article  CAS  PubMed  Google Scholar 

  • National-Commission-on-the-BP-Deepwater-Horizon-Oil-Spill-and-Offshore-Drilling (2011). The use of surface and subsea dispersants during the BP Deepwater Horizon oil spill. http://cybercemetery.unt.edu/archive/oilspill/20121211010455/http://www.oilspillcommission.gov/sites/default/files/documents/Updated Dispersants Working Paper.pdf

  • National Research Council (2003) Committee on oil in the sea III: inputs, fates, and effects. The National Academic Press, Washington, DC

    Google Scholar 

  • Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep-Sea Res Pt II 57:2008–2021

    Article  CAS  Google Scholar 

  • Passow U, Ziervogel K (2016) Marine snow sedimented oil released during the Deepwater Horizon spill. Oceanography 29:118–125

    Article  Google Scholar 

  • Pickering RW (1999) A toxicological review of polycyclic aromatic hydrocarbons. J Toxicol Cutan Ocul Toxicol 18:101–135

    Article  CAS  Google Scholar 

  • Ploug H, Kühl M, Buchholz-Cleven B, Jørgensen BB (1997) Anoxic aggregates – an ephemeral phenomenon in the pelagic environment? Aquat Microb Ecol 13:285–294

    Article  Google Scholar 

  • Putscher RE (1952) Isolation of olefins from Bradford crude oil. Anal Chem 24:1551–1558

    Article  CAS  Google Scholar 

  • Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK (2012) Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci USA 109:20229–20234

    Article  CAS  PubMed  Google Scholar 

  • Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci USA 109:20292–20297

    Article  CAS  PubMed  Google Scholar 

  • Rivers AR, Sharma S, Tringe SG, Martin J, Joye SB, Moran MA (2013) Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. ISME J 7:2315–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-R LM, Overholt WA, Hagan C, Huettel M, Kostka JE, Konstantinidis KT (2015) Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. ISME J 9:1928–1940

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A (2015) Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci USA 112:4015–4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, Gilbert JA (2014) Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio 5:e01371–e01314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sierra-Garcia IN, de Oliveira VM (2013) Microbial hydrocarbon degradation: efforts to understand biodegradation in petroleum reservoirs. InTech. https://doi.org/10.5772/55920. Available from: http://www.intechopen.com/books/biodegradation-engineering-and-technology/microbial-hydrocarbon-degradation-efforts-to-understand-biodegradation-in-petroleum-reservoirs

    Google Scholar 

  • Socolofsky SA, Adams EE, Sherwood CR (2011) Formation dynamics of subsurface hydrocarbon intrusions following the Deepwater Horizon blowout. Geophys Res Lett 38:L09602

    Article  CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MS, Klotz MG (2011) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 3:91–100

    Article  CAS  PubMed  Google Scholar 

  • Tecon R, Binggeli O, van der Meer JR (2009) Double-tagged fluorescent bacterial bioreporter for the study of polycyclic aromatic hydrocarbon diffusion and bioavailability. Environ Microbiol 11:2271–2283

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov M, Leach RW, Wingreen NS (2015) Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J 9:68–80

    Article  PubMed  CAS  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence: a new approach to oil and gas exploration, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Valentine DL, Mezić I, Maćešić S, Črnjarić-Žic N, Ivić S, Hogan PJ, Fonoberov VA, Loire S (2012) Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc Natl Acad Sci USA 109:20286–20291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Netzer F, Pilloni G, Kleindienst S, Kruger M, Knittel K, Grundger F, Lueders T (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552

    Article  CAS  Google Scholar 

  • Wang Z, Fingas M, Blenkinsopp S, Sergy G, Landriault M, Sigouin L, Foght J, Semple K, Westlake DWS (1998) Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J Chromatogr A 809:89–107

    Article  CAS  PubMed  Google Scholar 

  • Weissenfels WD, Klewer H-J, Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 36:689–696

    Article  CAS  PubMed  Google Scholar 

  • Went FW (1960) Organic matter in the atmosphere, and its possible relation to petroleum formation. Proc Natl Acad Sci USA 46:212–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westbrook SJ, Rayner JL, Davis GB, Clement TP, Bjerg PL, Fisher SJ (2005) Interaction between shallow groundwater, saline surface water and contaminant discharge at a seasonally and tidally forced estuarine boundary. Anglais 302:15

    Google Scholar 

  • Widdel F, Knittel K, Galushko A (2010) Anaerobic hydrocarbon-degrading microorganisms: an overview. In: Timmis KN, McGenity T, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin Heidelberg, pp 1997–2021

    Chapter  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham W-R, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, Luensdorf H, Timmis KN, Golyshin PN (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54:141–148

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Passow U, Chanton JP, Nöthig E-M, Asper V, Sweet J et al (2016) Sustained deposition of contaminants from the Deepwater Horizon spill. Proc Natl Acad Sci USA 113:E3332–E3340

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SBJ’s effort in writing this chapter was made possible by a grant from The Gulf of Mexico Research Initiative supporting the ECOGIG-2 (Ecosystem Impacts of Oil and Gas Inputs to the Gulf) research consortium. This is ECOGIG contribution number 469.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Kleindienst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kleindienst, S., Joye, S.B. (2019). Global Aerobic Degradation of Hydrocarbons in Aquatic Systems. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50418-6_46

Download citation

Publish with us

Policies and ethics