Skip to main content

Rational Construction of Bacterial Strains with New/Improved Catabolic Capabilities for the Efficient Breakdown of Environmental Pollutants

  • Reference work entry
  • First Online:
  • 1385 Accesses

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Although numerous bacteria capable of degrading environmental pollutants have been isolated, characterized and used in bioremediation processes, many compounds of environmental concern such as PCBs, dioxins, and explosives are still hardly biodegradable. The emerging methodologies of genetic engineering, although considered as highly promising for the construction of “superbugs,” largely failed to create the requested recombinant hyperdegraders with catabolical enzymes exhibiting novel and/or highly improved features, apart from very few exceptions. The generation of these “superbugs” will require additional cellular evolution and a more profound understanding and fine-tuning of genetic regulation which could be helped by the exploitation of the metagenome and novel strategies in synthetic biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bogdanova ES, Bass IA, Minakhin LS, Petrova MA, Mindlin SZ, Volodin AA, Kalyaeva ES, Tiedje JM, Hobman JL, Brown NL, Nikiforov VG (1998) Horizontal spread of mer operons among gram-positive bacteria in natural environments. Microbiology 144:609–620

    Article  CAS  Google Scholar 

  • Brenner V, Arensdorf JJ, Focht DD (1994) Genetic construction of PCB degraders. Biodegradation 5:359–377

    Article  CAS  Google Scholar 

  • Cámara B, Herrera C, González M, Couve E, Hofer B, Seeger M (2004) From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 6:842–850

    Article  Google Scholar 

  • Cases I, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222

    CAS  PubMed  Google Scholar 

  • Chen X, Christopher A, Jones JP, Bell SG, Guo Q, Xu F, Rao Z, Wong L-L (2002) Crystal structure of the F87 W/Y96F/V247 L mutant of cytochrome P450cam with 1,3,5-trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenzene. J Biol Chem 277:37519–37526

    Article  CAS  Google Scholar 

  • Clement P, Matus V, Cardenas L, Gonzalez B (1995) Degradation of trichlorophenols by Alcaligenes eutrophus JMP134. FEMS Microbiol Lett 127:51–55

    Article  CAS  Google Scholar 

  • Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32:639–650

    Article  CAS  Google Scholar 

  • de Lorenzo V (1994) Designing microbial systems for gene expression in the field. Trends Biotechnol 12:365–371

    Article  Google Scholar 

  • de Lorenzo V, Timmis KN (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235:368–405

    Google Scholar 

  • Duque E, Ramos-Gonzalez M, Delgado A, Contreras A, Molin S, Ramos JL (1992) Genetically engineered Pseudomonas strains for mineralization of aromatics: survival, performances, gene transfer, and biological containment. In: Wilkins RM (ed) Controlled delivery of crop-protection agents. Taylor & Francis, London, pp 429–437

    Google Scholar 

  • Furukawa K (2003) ‘Super bugs’ for bioremediation. Trends Biotechnol 21:187–190

    Article  CAS  Google Scholar 

  • Furukawa K, Suenaga H, Goto M (2004) Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol 186:5189–5196

    Article  CAS  Google Scholar 

  • Haro M-A, de Lorenzo V (2001) Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J Biotechnol 85:103–113

    Article  CAS  Google Scholar 

  • Henning H, Leggewie C, Pohl M, Müller M, Eggert T, Jaeger K-E (2006) Identification of novel benzoylformate decarboxylases by growth selection. Appl Environ Microbiol 72:7510–7517

    Article  CAS  Google Scholar 

  • Hur H-G, Sadowsky MJ, Wackett LP (1994) Metabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786(pHG-2) via an engineered metabolic pathway. Appl Environ Microbiol 60:4148–4154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwakiri R, Yoshihira K, Ngadiman FT, Goto M, Furukawa K (2004) Total degradation of pentachloroethne by an engineered Alcaligenes strain expressing a modified camphor mono-oexygenase and a hybrid dioxygenase. Biosci Biotechnol Biochem 68:1353–1356

    Article  CAS  Google Scholar 

  • Janssen DB, Dinkla IJT, Poelarends GJ, Terpstra P (2005) Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ Microbiol 7:1868–1882

    Article  CAS  Google Scholar 

  • Jiang J, Zhang R, Li R, Gu J-D, Li S (2007) Simultaneous biodegradation of methyl parathion and carbofuran by a genetically engineered microorganism constructed by mini-Tn 5 transposon. Biodegradation 18:403–412

    Article  CAS  Google Scholar 

  • Keasling JD, Bang SW (1998) Recombinant DNA techniques for bioremediation and environ-mentally-friendly synthesis. Curr Opin Biotechnol 9:135–140

    Article  CAS  Google Scholar 

  • Kellogg ST, Chatterjee DK, Chakrabarty AM (1981) Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Science 214:1133–1135

    Article  CAS  Google Scholar 

  • Kimbara K (2005) Recent developments in the study of microbial aerobic degradation of polychlorinated biphenyls. Microbes Environ 20:127–134

    Article  Google Scholar 

  • Klemba M, Jakobs B, Wittich R-M, Pieper DH (2000) Chromosomal integration of tcb chlorocatechol pathway genes as a means of expanding the growth substrate range of bacteria to include haloaromatics. Appl Environ Microbiol 66:3255–3261

    Article  CAS  Google Scholar 

  • Leigh MB, Pellizari VH, Uhlík O, Sutka R, Rodrigues J, Ostrom NE, Zhou J, Tiedje JM (2007) Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J 1:134–148

    Article  CAS  Google Scholar 

  • Martínez P, Agulló L, Hernández M, Seeger M (2007) Chlorobenzoate inhibits growth and induces stress proteins in the PCB-degrading bacterium Burkholderia xenovorans LB400. Arch Microbiol 188:289–297

    Article  Google Scholar 

  • Meyer A, Pellaux R, Panke S (2007) Bioengineering novel in vitro metabolic pathways using synthetic biology. Curr Opin Microbiol 10:246–253

    Article  CAS  Google Scholar 

  • Molin S, Boe L, Jensen LB, Kristensen CS, Givskov M, Ramos JL, Bej AK (1993) Suicidal genetic elements and their use in biological containment of bacteria. Annu Rev Microbiol 47:139–166

    Article  CAS  Google Scholar 

  • Molina L, Ramos C, Ronchel MC, Molin S, Ramos JL (1998) Construction of an efficient biologically contained Pseudomonas putida strain and its survival in outdoor assays. Appl Environ Microbiol 64:2072–2078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murray NE (2002) Immigration control of DNA in bacteria: self versus non-self. Microbiology 148:3–20

    Article  CAS  Google Scholar 

  • Pieper DH (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67:170–191

    Article  CAS  Google Scholar 

  • Pollmann K, Wray V, Pieper DH (2005) Chloromethylmuconolactones as critical metabolites in the degradation of chloromethylcatechols: recalcitrance of 2-chlorotoluene. J Bacteriol 187:2332–2440

    Article  CAS  Google Scholar 

  • Prosser JL (1994) Molecular marker systems for detection of genetically engineered microorganisms in the environment. Microbiology 140:5–17

    Article  CAS  Google Scholar 

  • Ravatn R, Zehnder AJB, van der Meer JR (1998) Low frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida F1 and to indigenous bacteria in laboratory-scale activated-sludge microcosms. Appl Environ Microbiol 64:2126–2132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reineke W (1998) Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 52:287–331

    Article  CAS  Google Scholar 

  • Tock MR, Dryden DTF (2005) The biology of restriction and anti-restriction. Curr Opin Microbiol 8:466–472

    Article  CAS  Google Scholar 

  • Wackett LP, Sadowsky MJ, Newman LN, Hur H-G, Li S (1994) Metabolism of polyhalogenated compounds by a genetically engineered bacterium. Nature 368:627–629

    Article  CAS  Google Scholar 

  • Wexler M, Bond PL, Richardson DJ, Johnston AWB (2005) A wide host-range metagenomic library from a wastewater treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environ Microbiol 7:1917–1926

    Article  CAS  Google Scholar 

  • Wittich R-M, Wolff P (2007) Growth of the genetically engineered strain Cupriavidus necator RW112 with chlorobenzoates and technical chlorobiphenyls. Microbiology 153:186–195

    Article  CAS  Google Scholar 

  • Yan D-Z, Liu H, Zhou N-Y (2006) Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Appl Environ Microbiol 72:2283–2286

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-L. Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wittich, RM., van Dillewijn, P., Ramos, JL. (2019). Rational Construction of Bacterial Strains with New/Improved Catabolic Capabilities for the Efficient Breakdown of Environmental Pollutants. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50418-6_35

Download citation

Publish with us

Policies and ethics