Skip to main content

Phylogenomics of Aerobic Bacterial Degradation of Aromatics

  • Reference work entry
  • First Online:
Book cover Aerobic Utilization of Hydrocarbons, Oils, and Lipids

Abstract

Aromatic compounds are widely distributed in nature. They are found as lignin components, aromatic amino acids, and xenobiotic compounds, among others. Microorganisms, mostly bacteria, degrade an impressive variety of such chemical structures. Various aerobic aromatic catabolic pathways have been reported in bacteria, which typically consist of activation of the aromatic ring through oxygenases or CoA ligases and ring cleavage of di- or trihydroxylated intermediates or dearomatized CoA derivatives. We survey almost 900 sequenced bacterial genomes available in 2008 for the presence of genes encoding key enzymes of aromatic metabolic pathways, including ring-cleavage enzymes as well as enzymes activating aromatics or dearomatizing CoA derivatives. The metabolic diversity is discussed from two angles: the spread of such key activities among different bacterial phyla and the overall metabolic potential of members of bacterial genera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenschmidt U, Fuchs G (1992) Novel aerobic 2-aminobenzoate metabolism. Purification and characterization of 2-aminobenzoate-CoA ligase, localisation of the genes on a 8-kbp plasmid, and cloning and sequencing of the genes from a denitrifying Pseudomonas sp. Eur J Biochem 205:721–727

    Article  CAS  PubMed  Google Scholar 

  • Ampe F, Lindley ND (1996) Flux limitations in the ortho pathway of benzoate degradation of Alcaligenes eutrophus: metabolite overflow and induction of the meta pathway at high substrate concentrations. Microbiology 142:1807–1817

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Konohana T, Shinke R, Nishira H (1984) Two catechol 1,2-dioxygenases from aniline-assimilating bacterium, Frateuria species ANA-18. Agric Biol Chem 48:2097–2104

    CAS  Google Scholar 

  • Arias-Barrau E, Olivera ER, Luengo JM, Fernandez C, Galan B, Garcia JL, Diaz E, Minambres B (2004) The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol 186:5062–5077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arias-Barrau E, Sandoval A, Naharro G, Olivera ER, Luengo JM (2005) A two-component hydroxylase involved in the assimilation of 3-hydroxyphenyl acetate in Pseudomonas putida. J Biol Chem 280:26435–26447

    CAS  PubMed  Google Scholar 

  • Asturias JA, Timmis KN (1993) Three different 2,3-dihydroxybiphenyl-1,2-dioxygenase genes in the gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J Bacteriol 175:4631–4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballou DP, Entsch B, Cole LJ (2005) Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. Biochem Biophys Res Commun 338:590–598

    Article  CAS  PubMed  Google Scholar 

  • Beil S, Mason JR, Timmis KN, Pieper DH (1998) Identification of chlorobenzene dioxygenase sequence elements involved in dechlorination of 1,2,4,5-tetrachlorobenzene. J Bacteriol 180:5520–5528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beltrametti F, Marconi AM, Bestetti G, Colombo C, Galli E, Ruzzi M, Zennaro E (1997) Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 63:2232–2239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch R, GarciaValdes E, Moore ERB (1999a) Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene 236:149–157

    Article  CAS  PubMed  Google Scholar 

  • Bosch R, Moore ERB, GarciaValdes E, Pieper DH (1999b) Nah W, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J Bacteriol 181:2315–2322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buder R, Fuchs G (1989) 2-Aminobenzoyl-CoA monooxygenase/reductase, a novel type of flavoenzyme. Purification and some properties of the enzyme. Eur J Biochem 185:629–635

    Article  CAS  PubMed  Google Scholar 

  • Cai M, Xun LY (2002) Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184:4672–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cámara B, Bielecki P, Kaminski F, dos Santos VM, Plumeier I, Nikodem P, Pieper DH (2007) A gene cluster involved in degradation of substituted salicylates via ortho cleavage in Pseudomonas sp. strain MT1 encodes enzymes specifically adapted for transformation of 4-methylcatechol and 3-methylmuconate. J Bacteriol 189:1664–1674

    Article  PubMed  CAS  Google Scholar 

  • Cao B, Geng A, Loh K (2008) Induction of ortho- and meta-cleavage pathways in Pseudomonas in biodegradation of high benzoate concentration: MS identification of catabolic enzymes. Appl Microbiol Biotechnol 81:99–107

    Article  CAS  PubMed  Google Scholar 

  • Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agullo L, Reyes VL, Hauser L, Cordova M, Gomez L, Gonzalez M, Land M, Lao V, Larimer F, LiPuma JJ, Mahenthiralingam E, Malfatti SA, Marx CJ, Parnell JJ, Ramette A, Richardson P, Seeger M, Smith D, Spilker T, Sul WJ, Tsoi TV, Ulrich LE, Zhulin IB, Tiedje JM (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 103:15280–15287

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang HK, Mohseni P, Zylstra GJ (2003) Characterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. J Bacteriol 185:5871–5881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daane LL, Harjono I, Barns SM, Launen LA, Palleroni NJ, Häggblom MM (2002) PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. Nov., a naphthalene- degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52:131–139

    Article  CAS  PubMed  Google Scholar 

  • Dehmel U, Engesser K-H, Timmis KN, Dwyer DF (1995) Cloning, nucleotide sequence, and expression of the gene encoding a novel dioxygenase involved in metabolism of carboxydiphenyl ehters in Pseudomonas pseudoalcaligenes POB310. Arch Microbiol 163:35–41

    Article  CAS  PubMed  Google Scholar 

  • Denef VJ, Park J, Tsoi TV, Rouillard JM, Zhang H, Wibbenmeyer JA, Verstraete W, Gulari E, Hashsham SA, Tiedje JM (2004) Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 70:4961–4970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denef VJ, Klappenbach JA, Patrauchan MA, Florizone C, Rodrigues JL, Tsoi TV, Verstraete W, Eltis LD, Tiedje JM (2006) Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400. Appl Environ Microbiol 72:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng D, Li X, Fang X, Sun G (2007) Characterization of two components of the 2-naphthoate monooxygenase system from Burkholderia sp. strain JT1500. FEMS Microbiol Lett 273:22–27

    Article  CAS  PubMed  Google Scholar 

  • Diaz E, Ferrandez A, Prieto MA, Garcia J (2001) Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev 65:523–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte M, Jauregui R, Vilchez-Vargas R, Junca H, Pieper DH (2014) AromaDeg, a novel database for phylogenomics of aerobic degradation of aromatics. Database bau118

    Google Scholar 

  • Duffner FM, Muller R (1998) A novel phenol hydroxylase and catechol 2,3-dioxygenase from the thermophilic Bacillus thermoleovorans strain A2: nucleotide sequence and analysis of the genes. FEMS Microbiol Lett 161:37–45

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM, Khuri S, Gane PJ (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 64:153–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton RW (1996) p-Cumate catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA carrying the cmt operon. J Bacteriol 178:1351–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton RW, Ribbons DW (1982) Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. J Bacteriol 151:48–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eby DM, Beharry ZM, Coulter ED, Kurtz DM, Neidle EL (2001) Characterization and evolution of anthranilate 1,2-dioxygenase from Acinetobacter sp. strain ADP1. J Bacteriol 183:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 5:113

    Article  CAS  Google Scholar 

  • Eltis LD, Bolin JT (1996) Evolutionary relationships among extradiol dioxygenases. J Bacteriol 178:5930–5937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enroth C, Huang W, Waters S, Neujahr H, Lindqvist Y, Schneider G (1994) Crystallization and preliminary X-ray analysis of phenol hydroxlase from Trichosporon cutaneum. J Mol Biol 238:128–130

    Article  CAS  PubMed  Google Scholar 

  • Eulberg D, Golovleva LA, Schlomann M (1997) Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP. J Bacteriol 179:370–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuenmayor SL, Wild M, Boyes AL, Williams PA (1998) A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol 180:2522–2530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlt JA, Babbitt PC (2001) Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu Rev Biochem 70:209–246

    Article  CAS  PubMed  Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez JM, Mayer F, Moran MA, Hodson RE, Whitman WB (1997) Sagittula stellata gen. Nov., sp. Nov., a lignin-transforming bacterium from a coastal environment. Int J Syst Bacteriol 47:773–780

    Article  CAS  PubMed  Google Scholar 

  • Haigler BE, Johnson GR, Suen WC, Spain JC (1999) Biochemical and genetic evidence for meta-ring cleavage of 2,4,5-trihydroxytoluene in Burkholderia sp. strain DNT. J Bacteriol 181:965–972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatta T, Mukerjee-Dhar G, Damborsky J, Kiyohara H, Kimbara K (2003) Characterization of a novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a polychlorinated biphenyl- and naphthalene-degrading Bacillus sp. JF8. J Biol Chem 278:21483–21492

    Article  CAS  PubMed  Google Scholar 

  • Hawumba JF, Brözel VS, Theron J (2007) Cloning and characterization of a 4-hydroxyphenylacetate 3-hydroxylase from the thermophile Geobacillus sp. PA-9. Curr Microbiol 55:480–484

    Article  CAS  PubMed  Google Scholar 

  • Hiromoto T, Fujiwara S, Hosokawa K, Yamaguchi H (2006) Crystal structure of 3-hydroxybenzoate hydroxylase from Comamonas testosteroni has a large tunnel for substrate and oxygen access to the active site. J Mol Biol 364:878–896

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zhao KX, Shen XH, Chaudhry MT, Jiang CY, Liu SJ (2006) Genetic characterization of the resorcinol catabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:7238–7245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iida T, Nakamura K, Izumi A, Mukouzaka Y, Kudo T (2006) Isolation and characterization of a gene cluster for dibenzofuran degradation in a new dibenzofuran-utilizing bacterium, Paenibacillus sp. strain YK5. Arch Microbiol 184:305–315

    Article  CAS  PubMed  Google Scholar 

  • Ishiyama D, Vujaklija D, Davies J (2004) Novel pathway of salicylate degradation by Streptomyces sp. strain WA46. Appl Environ Microbiol 70:1297–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail W, El-Said Mohamed M, Wanner BL, Datsenko KA, Eisenreich W, Rohdich F, Bacher A, Fuchs G (2003) Functional genomics by NMR spectroscopy. Phenylacetate catabolism in Escherichia coli. Eur J Biochem 270:3047–3054

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki T, Miyauchi K, Masai E, Fukuda M (2006) Multiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp. strain RHA1. Appl Environ Microbiol 72:5396–5402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez JI, Minambres B, Garcia JL, Diaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841

    Article  CAS  PubMed  Google Scholar 

  • Jones RM, Pagmantidis V, Williams PA (2000) sal genes determining the catabolism of salicylate esters are part of a supraoperonic cluster of catabolic genes in Acinetobacter sp. strain ADP1. J Bacteriol 182:2018–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junca H, Plumeier I, Hecht HJ, Pieper DH (2004) Difference in kinetic behaviour of catechol 2,3-dioxygenase variants from a polluted environment. Microbiology 150:4181–4187

    Article  CAS  PubMed  Google Scholar 

  • Kasai D, Masai E, Miyauchi K, Katayama Y, Fukuda M (2004) Characterization of the 3-O-methylgallate dioxygenase gene and evidence of multiple 3-O-methylgallate catabolic pathways in Sphingomonas paucimobilis SYK-6. J Bacteriol 186:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasai D, Masai E, Miyauchi K, Katayama Y, Fukuda M (2005) Characterization of the gallate dioxygenase gene: three distinct ring cleavage dioxygenases are involved in syringate degradation by Sphingomonas paucimobilis SYK-6. J Bacteriol 187:5067–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Miyatake H, Hisano T, Iwasaki W, Ebihara AKM (2007) Crystallization and preliminary X-ray analysis of the oxygenase component (HpaB) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:556–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurnasov O, Jablonski L, Polanuyer B, Dorrestein P, Begley T, Osterman A (2003) Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Microbiol Lett 227:219–227

    Article  CAS  PubMed  Google Scholar 

  • Laurie AD, Lloyd-Jones G (1999) Conserved and hybrid meta-cleavage operons from PAH-degrading Burkholderia RP007. Biochem Biophys Res Commun 262:308–314

    Article  CAS  PubMed  Google Scholar 

  • Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Ka JO, Cho JC (2008) Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol Lett 285:263–269

    Article  CAS  PubMed  Google Scholar 

  • Maeda M, Chung S-Y, Song E, Kudo T (1995) Multiple genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase in the gram-positive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis TA421, isolated from a termite ecosystem. Appl Environ Microbiol 61:549–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin VJJ, Mohn WW (1999) A novel aromatic-ring-hydroxylating dioxygenase from the diterpenoid-degrading bacterium Pseudomonas abietaniphila BKME-9. J Bacteriol 181:2675–2682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin VJ, Mohn WW (2000) Genetic investigation of the catabolic pathway for degradation of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. J Bacteriol 182:3784–3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyauchi K, Adachi Y, Nagata Y, Takagi M (1999) Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis. J Bacteriol 181:6712–6719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazawa D, Mukerjee-Dhar G, Shimura M, Hatta T, Kimbara K (2004) Genes for Mn(II)-dependent NahC and Fe(II)-dependent NahH located in close proximity in the thermophilic naphthalene and PCB degrader, Bacillus sp. JF8: cloning and characterization. Microbiology 150:993–1004

    Article  CAS  PubMed  Google Scholar 

  • Moonen MJ, Synowsky SA, van den Berg WA, Westphal AH, Heck AJ, van den Heuvel RH, Fraaije MW, van Berkel WJ (2008) Hydroquinone dioxygenase from Pseudomonas fluorescens ACB: a novel member of the family of nonheme-iron(II)-dependent dioxygenases. J Bacteriol 190:5199–5209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran MA, Buchan A, González JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye W, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren Q, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, Ward N (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432:910–913

    Article  CAS  PubMed  Google Scholar 

  • Muraki T, Taki M, Hasegawa Y, Iwaki H, Lau PCK (2003) Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Appl Environ Microbiol 69:1564–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano H, Wieser M, Hurh B, Kawai T, Yoshida T, Yamane T, Nagasawa T (1999) Purification, characterization and gene cloning of 6-hydroxynicotinate 3-monooxygenase from Pseudomonas fluorescens TN5. Eur J Biochem 260:120–126

    Article  CAS  PubMed  Google Scholar 

  • Nogales J, Canales A, Jimenez-Barbero J, Garcia JL, Diaz E (2005) Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases. J Biol Chem 280:35382–35390

    Article  CAS  PubMed  Google Scholar 

  • Nogales J, Palsson B, Thiele I (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nomura Y, Nakagawa M, Ogawa N, Harashima S, Oshima Y (1992) Genes in PHT plasmid encoding the initial degradation pathway of phthalate in Pseudomonas putida. J Ferm Bioeng 74:333–344

    Article  CAS  Google Scholar 

  • Nordin K, Unell M, Jansson JK (2005) Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 71:6538–6544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nurk A, Kasak L, Kivisaar M (1991) Sequence of the gene (pheA) encoding phenol monooxygenae from Pseudomonas sp. EST1001: expression in Escherichia coli and Pseudomonas putida. Gene 102:13–18

    CAS  PubMed  Google Scholar 

  • Park HS, Kim HS (2000) Identification and characterization of the nitrobenzene catabolic plasmids pNB1 and pNB2 in Pseudomonas putida HS12. J Bacteriol 182:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng X, Misawa N, Harayama S (2003) Isolation and characterization of thermophilic Bacilli degrading cinnamic, 4-coumaric, and ferulic acids. Appl Environ Microbiol 69:1417–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Pantoja D, Ledger T, Pieper DH, Gonzalez B (2003) Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. J Bacteriol 185:1534–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Pantoja D, De la Iglesia R, Pieper DH, Gonzalez B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32:736–794

    Article  PubMed  CAS  Google Scholar 

  • Pinyakong O, Habe H, Yoshida T, Nojiri H, Omori T (2003) Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Commun 301:350–357

    Article  CAS  PubMed  Google Scholar 

  • Rabus R (2005) Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Appl Microbiol Biotechnol 68:580–587

    Article  CAS  PubMed  Google Scholar 

  • Rascher A, Hu Z, Buchanan GO, Reid R, Hutchinson CR (2005) Insights into the biosynthesis of the benzoquinone ansamycins geldanamycin and herbimycin, obtained by gene sequencing and disruption. Appl Environ Microbiol 71:4862–4871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roper DI, Cooper RA (1990) Subcloning and nucleotide sequence of the 3,4-dihydroxyphenylacetate (homoprotocatechuate) 2,3-dioxygenase gene from Escherichia coli C. FEBS Lett 275:53–57

    Article  CAS  PubMed  Google Scholar 

  • Sakai M, Masai E, Asami H, Sugiyama K, Kimbara K, Fukuda M (2002) Diversity of 2,3-dihydroxybiphenyl dioxygenase genes in a strong PCB degrader, Rhodococcus sp. strain RHA1. J Biosci Bioeng 93:421–427

    Article  CAS  PubMed  Google Scholar 

  • Sakai M, Ezaki S, Suzuki N, Kurane R (2005) Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101. Appl Microbiol Biotechnol 68:111–116

    Article  CAS  PubMed  Google Scholar 

  • Sanchez MA, Gonzalez B (2007) Genetic characterization of 2,4,6-trichlorophenol degradation in Cupriavidus necator JMP134. Appl Environ Microbiol 73:2769–2776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Perez G, Mira A, Nyiro G, Pasić L, Rodriguez-Valera F (2008) Adapting to environmental changes using specialized paralogs. Trends Genet 24:154–158

    Article  CAS  PubMed  Google Scholar 

  • Sasoh M, Masai E, Ishibashi S, Hara H, Kamimura N, Miyauchi K, Fukuda M (2006) Characterization of the terephthalate degradation genes of Comamonas sp. strain E6. Appl Environ Microbiol 72:1825–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Ouchiyama N, Kimura T, Nojiri H, Yamane H, Omori T (1997a) Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase. J Bacteriol 179:4841–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato SI, Nam JW, Kasuga K, Nojiri H, Yamane H, Omori T (1997b) Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10. J Bacteriol 179:4850–4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweigert N, Zehnder AJB, Eggen RIL (2001) Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3:81–91

    Article  CAS  PubMed  Google Scholar 

  • Seto M, Masai E, Ida M, Hatta T, Kimbara K, Fukuda M, Yano K (1995) Multiple polychlorinated biphenyl transformation systems in the gram-positive bacterium Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61:4510–4513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. J Ind Microbiol Biotechnol 19:130–133

    Article  CAS  Google Scholar 

  • Shimura M, MukerjeeDhar G, Kimbara K, Nagato H, Kiyohara H, Hatta T (1999) Isolation and characterization of a thermophilic Bacillus sp. JF8 capable of degrading polychlorinated biphenyls and naphthalene. FEMS Microbiol Lett 178:87–93

    Article  CAS  PubMed  Google Scholar 

  • Smith DJ, Park J, Tiedje JM, Mohn WW (2007) A large gene cluster in Burkholderia xenovorans encoding abietane diterpenoid catabolism. J Bacteriol 189:6195–6204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stingley RL, Khan AA, Cerniglia CE (2004a) Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1. Biochem Biophys Res Commun 322:133–146

    Article  CAS  PubMed  Google Scholar 

  • Stingley RL, Brezna B, Khan AA, Cerniglia CE (2004b) Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology 150:3749–3761

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Senda T, Aoshima H, Masai E, Fukuda M, Mitsui Y (1999) Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. Structure 7:953–965

    Article  CAS  PubMed  Google Scholar 

  • Suske WA, Held M, Schmid A, Fleischmann T, Wubbolts MG, Kohler HPE (1997) Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1. J Biol Chem 272:24257–24265

    Article  CAS  PubMed  Google Scholar 

  • Tago K, Sato J, Takesa H, Kawagishi H, Hayatsu M (2005) Characterization of methylhydroquinone-metabolizing oxygenase genes encoded on plasmid in Burkholderia sp. NF100. J Biosci Bioeng 100:517–523

    Article  CAS  PubMed  Google Scholar 

  • Taguchi K, Motoyama M, Kudo T (2004) Multiplicity of 2,3-dihydroxybiphenyl dioxygenase genes in the Gram-positive polychlorinated biphenyl degrading bacterium Rhodococcus rhodochrous K37. Biosci Biotechnol Biochem 68:787–795

    Article  CAS  PubMed  Google Scholar 

  • Takenaka S, Murakami S, Shinke R, Hatakeyama K, Yukawa H, Aoki K (1997) Novel genes encoding 2-aminophenol 1,6-dioxygenase from Pseudomonas species AP-3 growing on 2-aminophenol and catalytic properties of the purified enzyme. J Biol Chem 272:14727–14732

    Article  CAS  PubMed  Google Scholar 

  • Takeo M, Yasukawa T, Abe Y, Niihara S, Maeda Y, Negoro S (2003) Cloning and characterization of a 4-nitrophenol hydroxylase gene cluster from Rhodococcus sp. PN1. J Biosci Bioeng 95:139–145

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetic analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Fishman A, Bentley WE, Wood TK (2004) Altering toluene 4-monooxygenase by active-site engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone. J Bacteriol 186:4705–4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thotsaporn K, Sucharitakul J, Wongratana J, Suadee C, Chaiyen P (2004) Cloning and expression of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii: evidence of the divergence of enzymes in the class of two-protein component aromatic hydroxylases. Biochim Biophys Acta 1680:60–66

    Article  CAS  PubMed  Google Scholar 

  • van Berkel WJ, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689

    Article  CAS  PubMed  Google Scholar 

  • van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261

    Article  PubMed  CAS  Google Scholar 

  • Vetting MW, Wackett LP, Que L, Lipscomb JD, Ohlendorf DH (2004) Crystallographic comparison of manganese- and iron-dependent homoprotocatechuate 2,3-dioxygenases. J Bacteriol 186:1945–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YZ, Zhou Y, Zylstra GJ (1995) Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D. Environ Health Perspect 103:9–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witzig R, Junca H, Hecht HJ, Pieper DH (2006) Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases. Appl Environ Microbiol 72:3504–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Resing K, Lawson SL, Babbitt PC, Copley SD (1999) Evidence that pcpA encodes 2,6-dichlorohydroquinone dioxygenase, the ring cleavage enzyme required for pentachlorophenol degradation in Sphingomonas chlorophenolica strain ATCC 39723. Biochemistry 38:7659–7669

    Article  CAS  PubMed  Google Scholar 

  • Yen KM, Gunsalus IC (1982) Plasmid gene organization: naphthalene/salicylate oxidation. Proc Natl Acad Sci USA 79:874–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Oikawa T, Obata H, Abe K, Mihara H, Esaki N (2007) Biochemical and genetic analysis of the gamma-resorcylate (2,6-dihydroxybenzoate) catabolic pathway in Rhizobium sp. strain MTP-10005: identification and functional analysis of its gene cluster. J Bacteriol 189:1573–1581

    Article  CAS  PubMed  Google Scholar 

  • Zaar A, Gescher J, Eisenreich W, Bacher A, Fuchs G (2004) New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii. Mol Microbiol 54:223–238

    Article  CAS  PubMed  Google Scholar 

  • Zylstra GJ, McCombie WR, Gibson DT, Finette BA (1988) Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl Environ Microbiol 54:1498–1503

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar H. Pieper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pérez-Pantoja, D., Donoso, R., Junca, H., González, B., Pieper, D.H. (2019). Phylogenomics of Aerobic Bacterial Degradation of Aromatics. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50418-6_33

Download citation

Publish with us

Policies and ethics