Skip to main content

Energetic and Other Quantitative Aspects of Microbial Hydrocarbon Utilization: An Introduction

  • Reference work entry
  • First Online:
  • 1402 Accesses

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Hydrocarbons represent “energy-rich” growth substrates for aerobic microorganisms and in principle allow high growth yields. In contrast, the energy gain with hydrocarbons in many anaerobic microorganisms is very low. The maximum gain of energy per mol of hydrocarbon degraded in the catabolism is predicted from calculated ΔG values. Some anaerobic degradation reactions of hydrocarbons with very low-energy gain as well as anaerobic activation reactions of hydrocarbons deserve particular attention from a bioenergetic point of view.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A fermentable hydrocarbon is, for instance, the unsaturated acetylene. Also some other unsaturated hydrocarbons are, at least theoretically, fermentable.

  2. 2.

    H, 1.008; C, 12.011.

  3. 3.

    Heat change of reaction under constant pressure.

  4. 4.

    \( \mathrm{T}=298.15\ \mathrm{K}\ \left({25}^{{}^{\circ}}\mathrm{C}\right) \); standard activity of solutes, \( a=1 \); standard (partial) pressure of gases = 101 kPa (standard fugacity = 1).

  5. 5.

    ΔGStandard values at temperatures other than 298.15 K can be calculated via the integrated “Delta-version” of the Gibbs-Helmholtz equation \( {\left(\frac{\partial }{\partial T}\frac{\Delta \mathrm{G}}{T}\right)}_p=\frac{\Delta H}{T^2}. \) Assuming that temperature dependence of ΔH within the range of physiologically relevant temperatures is negligible, the free energy change at temperatures other than 298.15 K (but at standard activities) is

    $$ \Delta {G}_T^{Standard}=\frac{T}{298.15}\Delta {G}^{{}^{\circ}}\, +\, \left(1-\frac{T}{298.15}\right)\Delta {H}^{{}^{\circ}} $$

    The same result is obtained from \( \Delta G=\Delta H-T\Delta S \) S by assuming that ΔH and ΔS are essentially constant within the range of physiologically relevant temperatures.

  6. 6.

    The apparent correctness of the old unit atm is due to the fact that it is numerically equivalent with standard fugacity = 1. Activities and fugacities are by definition without units, and the formally correct approximated substitution would \( {a}_{\mathrm{A}}=\frac{{\left[\mathrm{A}\right]}_{Actual}}{{\left[\mathrm{A}\right]}_{Standard}} \), etc. Here, the use of the modern unit Pa or kPa for [A], etc. is coherent.

  7. 7.

    The extremely low hypothetical equilibrium concentrations of these species can be calculated.

  8. 8.

    Linearity in the series of the higher alkanes may be a “pre-assumption” and basis for calculation of ΔG ° f or ΔH ° f values of compounds in homologous series via incremental additions. In the numerous sources of thermodynamic data, the original basis underlying such data is often difficult to trace back.

  9. 9.

    Also, the highly ordered (“improbable”) structure of the long-chain alkane contributes to thermodynamic instability.

  10. 10.

    A prominent example is nitrogenase: Despite the long evolution of nitrogen fixation, an enzyme type has not evolved that catalyzes the thermodynamically feasible N2 reduction with H2 or energetically equivalent electron donors without an investment of energy.

  11. 11.

    The utilization of chlorate by facultatively anaerobic bacteria for hydrocarbon metabolism (Chakraborty and Coates 2004; Tan et al. 2006) involves O2 that is generated from an intermediate \( \left({{\mathrm{Cl}\mathrm{O}}_2}^{-}\to {\mathrm{Cl}}^{-}+{\mathrm{O}}_2\right) \).

  12. 12.

    The Haldane equation describes the connection between the equilibrium concentrations of the reactants and products and their kinetic constants kcat and Km. The equilibrium constant is also thermodynamically given by the concentrations at \( \Delta G=0 \). In case of the reaction \( \mathrm{S}\to \mathrm{P} \), the connection is \( {\left(\frac{\left[\mathrm{P}\right]}{\left[\mathrm{S}\right]}\right)}_{\mathrm{e}\mathrm{q}}=\frac{k_{cat}^{\mathrm{S}}/{K}_m^{\mathrm{S}}}{k_{cat}^{\mathrm{P}}/{K}_m^{\mathrm{P}}}={\mathrm{e}}^{-\Delta {G}^{{}^{\circ}}/(RT)}. \)

  13. 13.

    The qATP is conceptually related to the \( \mathrm{P}/2{\mathrm{e}}^{-} \) ratio in aerobic and anaerobic respiration which indicates the number of ATP molecules formed per electron pair transported in the respiratory chain (in aerobes also P/O ratio). However, the qATP also includes ATP from substrate level phosphorylation.

References

  • Anderson RT, Lovley DR (2000) Hexadecane decay by methanogenesis. Nature 404:722–723

    Article  CAS  Google Scholar 

  • Atkins PW, de Paula J (2006) Physical chemistry, 8th edn. Oxford University Press, Oxford

    Google Scholar 

  • Boll M, Estelmann S, Heider J (2018) Anaerobic Degradation of Hydrocarbons: Mechanisms of Hydrocarbon Activation in the Absence of Oxygen. In: Boll M (ed) Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham

    Chapter  Google Scholar 

  • Bonin P, Gilewicz M, Bertrand JC (1992) Effects of oxygen on Pseudomonas nautica grown on n-alkane with or without nitrate. Arch Microbiol 157:538–545

    CAS  Google Scholar 

  • Bordel S, Muñoz R, Díaz L, Villaverde S (2007) New insights on toluene biodegradation by Pseudomonas putida F1: influence of pollutant concentration and excreted metabolites. Appl Microbiol Biotechnol 74:857–866

    Article  CAS  Google Scholar 

  • Brewer PG, Goyet C, Friedrich G (1997) Direct observation of the oceanic CO2 increase revisited. Proc Natl Acad Sci USA 94:8308–8313

    Article  CAS  Google Scholar 

  • Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64:437–446

    Article  CAS  Google Scholar 

  • D’Ans J, Lax E (1983) Taschenbuch für Chemiker und Physiker, Bd 2, 2. Aufl. Springer, Berlin

    Book  Google Scholar 

  • Dean JA (2004) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New York

    Google Scholar 

  • Dinkla IJT, Gabor E, Janssen DB (2001) Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the TOL (pWWO) plasmid. Appl Environ Microbiol 67:3406–3412

    Article  CAS  Google Scholar 

  • Dolfing J, Larter SR, Head IM (2008) Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2:442–452

    Article  CAS  Google Scholar 

  • Einsele A (1983) Biomass from higher n-alkanes. In: Rehm H-J, Reed G (eds) Biotechnology, vol 3. Verlag Chemie, Weinheim, pp 43–81

    Google Scholar 

  • Erickson LE (1981) Energetic yields associated with hydrocarbon fermentations. Biotechnol Bioeng 23:793–803

    Article  CAS  Google Scholar 

  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173

    Article  CAS  Google Scholar 

  • Ferrer A, Erickson LE (1979) Evaluation of data consistency and estimation of yield parameters in hydrocarbon fermentations. Biotechnol Bioeng 21:2203–2233

    Article  CAS  Google Scholar 

  • Garrels RM, Christ CL (1965) Solutions, minerals and equilibria. Harper & Row, New York

    Google Scholar 

  • Harms H, Wick LY, Smith KEC (2017) Matrix:Hydrophobic Compound Interactions. In: Krell T (ed) Cellular Ecophysiology of Microbe. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham

    Google Scholar 

  • Heijnen JJ, Van Dijken JP (1992) In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol Bioeng 39:833–858

    Article  CAS  Google Scholar 

  • Himo F (2002) Catalytic mechanism of benzylsuccinate synthase, a theoretical study. J Phys Chem B 106:7688–7692

    Article  CAS  Google Scholar 

  • Himo F (2005) C−C bond formation and cleavage in radical enzymes, a theoretical perspective. Biochim Biophys Acta 1707:24–33

    Article  CAS  Google Scholar 

  • Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456

    Article  CAS  Google Scholar 

  • Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BF, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180

    Article  CAS  Google Scholar 

  • Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Thauer RK, Shima S (2003) A conspicuous nickel protein in microbial mats that oxidise methane anaerobically. Nature 426:878–881

    Article  Google Scholar 

  • Leak DJ, Dalton H (1985) Growth yields of methanotrophs. Appl Microbiol Biotechnol 23:477–481

    Article  Google Scholar 

  • McMillen DF, Golden DM (1982) Hydrocarbon bond dissociation energies. Annu Rev Phys Chem 33:493–532

    Article  CAS  Google Scholar 

  • Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gashydrate area. Environ Microbiol 4:296–305

    Article  CAS  Google Scholar 

  • Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulphate. Environ Microbiol 9:187–196

    Article  CAS  Google Scholar 

  • Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., an new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12

    Article  CAS  Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lond 163B:224–231

    Google Scholar 

  • Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103

    Article  CAS  Google Scholar 

  • Rabus R, Nordhaus R, Ludwig W, Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59:1444–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F (2001) Anaerobic initial reaction of n-alkanes: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in the metabolism of n-hexane in a denitrifying bacterium. J Bacteriol 183:1707–1715

    Article  CAS  Google Scholar 

  • Reardon KF, Mosteller DC, Bull Rogers JD (2000) Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69:385–400

    Article  CAS  Google Scholar 

  • Ron E, Rosenberg E (2010) Bioremediation/Biomitigation: Introduction. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg

    Google Scholar 

  • Russell JB (2007) The energy spilling reactions of bacteria and other organisms. J Mol Microbiol Biotechnol 13:1–11

    Article  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schink B (2002) Anaerobic digestion: concepts, limits and perspectives. Water Sci Technol 45:1–8

    Article  CAS  Google Scholar 

  • Shima S, Thauer RK (2005) Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr Opin Microbiol 8:643–648

    Article  CAS  Google Scholar 

  • So CM, Young LY (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stouthamer AH (1988) Bioenergetics and yields with electron acceptors other than oxygen. In: Erickson LE, Fung DY-C (eds) Handbook of anaerobic fermentations. Marcel Dekker, New York, pp 345–437

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  • Tan NC, van Doesburg W, Langenhoff AA, Stams AJ (2006) Benzene degradation coupled with chlorate reduction in a soil column study. Biodegradation 17:113–119

    Article  CAS  Google Scholar 

  • Tempest DW, Neijssel OM (1984) The Status of YATP and maintenance energy as biologically interpretable phenomena. Annu Rev Microbiol 38:459–486

    Article  CAS  Google Scholar 

  • Thauer RK, Shima S (2008) Methane as a fuel for anaerobic microorganisms. Annu NY Acad Sci 1125:158–170

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, Berlin

    Book  Google Scholar 

  • van Dijken JP, Harder W (1975) Growth yields of microorganisms on methanol and methane. A theoretical study. Biotechnol Bioeng 17:15–30

    Article  Google Scholar 

  • Wagner F, Kleemann T, Zahn W (1969) Microbial transformations of hydrocarbons. II. Growth constants and cell composition of microbial cells derived from n-alkanes. Biotechnol Bioeng 11:393–408

    Article  CAS  Google Scholar 

  • Widdel F, Musat F, Knittel K, Galushko A (2007) Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria. Cambridge University Press, Cambridge, pp 265–303

    Chapter  Google Scholar 

  • Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77:219–262

    Article  CAS  Google Scholar 

  • Wodzinski RS, Johnson MJ (1968) Yields of bacterial cells from hydrocarbons. Appl Microbiol 16:1886–1891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21:78–80

    Article  CAS  Google Scholar 

  • Zengler K, Richnow HH, Roselló-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Widdel .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 5 Hydrocarbons (methane, propane, n-hexane, and benzene as examples) and other substances as “energy carriers.” In a reaction with oxygen, liquid hydrocarbons reveal a high gravimetric energy density in comparison to many other compounds and elements (calculated for the highest oxides in their standard state). Gaseous hydrocarbons reveal a high volumetric energy density
Table 6 Thermodynamic properties of hydrocarbons and other compounds. Data are from other compilationsa

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Widdel, F., Musat, F. (2019). Energetic and Other Quantitative Aspects of Microbial Hydrocarbon Utilization: An Introduction. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50418-6_2

Download citation

Publish with us

Policies and ethics