Skip to main content

Catabolic Pathways and Enzymes Involved in Anaerobic Methane Oxidation

  • Reference work entry
  • First Online:
Anaerobic Utilization of Hydrocarbons, Oils, and Lipids

Abstract

Microbes use two distinct catabolic pathways for life with the fuel methane: aerobic methane oxidation carried out by bacteria and anaerobic methane oxidation carried out by archaea. The archaea capable of anaerobic oxidation of methane, anaerobic methanotrophs (ANME), are phylogenetically related to methanogens. While the carbon metabolism in ANME follows the pathway of reverse methanogenesis, the mode of electron transfer from methane oxidation to the terminal oxidant is remarkably versatile.

This chapter discusses the catabolic pathways of methane oxidation coupled to the reduction of nitrate, sulfate, and metal oxides. Methane oxidation with sulfate and metal oxides is hypothesized to involve direct interspecies electron transfer and extracellular electron transfer. Cultivation of ANME, their mechanisms of energy conservation, and details about the electron transfer pathways to the ultimate oxidants are rather new and quickly developing research fields, which may reveal novel metabolisms and redox reactions. The second section focuses on the carbon catabolism from methane to CO2 and the biochemistry in ANME with its unique enzymes containing Fe, Ni, Co, Mo, and W that are compared with their homologues found in methanogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn YH, Krzycki JA, Floss HG (1991) Steric course of the reduction of ethyl coenzyme m to ethane catalyzed by methyl coenzyme m reductase from methanosarcina-barkeri. J Am Chem Soc 113:4700–4701

    Article  CAS  Google Scholar 

  • Arshad A, Speth DR, de Graaf RM, Op den Camp HJ, Jetten MS, Welte CU (2015) A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea. Front Microbiol 6:1423

    Article  PubMed  PubMed Central  Google Scholar 

  • Aufhammer SW, Warkentin E, Ermler U, Hagemeier CH, Thauer RK, Shima S (2005) Crystal structure of methylenetetrahydromethanopterin reductase (Mer) in complex with coenzyme F420: architecture of the F420/FMN binding site of enzymes within the nonprolyl cis-peptide containing bacterial luciferase family. Protein Sci 14:1840–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bäumer S, Murakami E, Brodersen J, Gottschalk G, Ragsdale SW, Deppenmeier U (1998) The F420H2:heterodisulfide oxidoreductase system from Methanosarcina species. 2-Hydroxyphenazine mediates electron transfer from F420H2 dehydrogenase to heterodisulfide reductase. FEBS Lett 428:295–298

    Article  PubMed  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  CAS  PubMed  Google Scholar 

  • Bernskoetter WH, Schauer CK, Goldberg KI, Brookhart M (2009) Characterization of a rhodium(I) sigma-methane complex in solution. Science 326:553–556

    Article  CAS  PubMed  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Bonacker LG, Baudner S, Thauer RK (1992) Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera. Eur J Biochem 206:87–92

    Article  CAS  PubMed  Google Scholar 

  • Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS (2008) Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42:6791–6799

    Article  CAS  PubMed  Google Scholar 

  • Chen SL, Blomberg MRA, Siegbahn PEM (2012) How is methane formed and oxidized reversibly when catalyzed by Ni-containing methyl-coenzyme M reductase? Chem Eur J 18:6309–6315

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L, Vorholt JA, Lidstrom ME (2005) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6:208

    Google Scholar 

  • Costa KC, Leigh JA (2014) Metabolic versatility in methanogens. Curr Opin Biotechnol 29:70–75

    Article  CAS  PubMed  Google Scholar 

  • Dey M, Li XH, Kunz RC, Ragsdale SW (2010) Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue. Biochemistry 49:10902–10911

    Article  CAS  PubMed  Google Scholar 

  • Ebner S, Jaun B, Goenrich M, Thauer RK, Harmer J (2010) Binding of coenzyme B induces a major conformational change in the active site of methyl-coenzyme M reductase. J Am Chem Soc 132:567–575

    Article  CAS  PubMed  Google Scholar 

  • Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457–1462

    Article  CAS  PubMed  Google Scholar 

  • Ettwig KF, Shima S, Van De Pas-Schoonen KT, Kahnt J, Medema MH, Op Den Camp HJM, Jetten MSM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of archaea. Environ Microbiol 10:3164–3173

    Article  CAS  PubMed  Google Scholar 

  • Ettwig KF, Butler MK, Paslier DL, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, Dirk de Beer JG, Wessels HJCT, Theo van Alen FL, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Google Scholar 

  • Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438

    Article  CAS  PubMed  Google Scholar 

  • Ferry JG (2010) The chemical biology of methanogenesis. Planet Space Sci 58:1775–1783

    Article  CAS  Google Scholar 

  • Girguis PR, Cozen AE, DeLong EF (2005) Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl Environ Microbiol 71:3725–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goenrich M, Mahlert F, Duin EC, Bauer C, Jaun B, Thauer RK (2004) Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues. J Biol Inorg Chem 9:691–705

    Article  CAS  PubMed  Google Scholar 

  • Goenrich M, Duin EC, Mahlert F, Thauer RK (2005) Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B. J Biol Inorg Chem 10:333–342

    Article  CAS  PubMed  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci 103:11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottschalk G, Thauer RK (2001) The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim Biophys Acta 1505:28–36

    Article  CAS  PubMed  Google Scholar 

  • Goubeau M, Schreiner G, Thauer RK (1997) Purified methyl-coenzyme-M reductase is activated when the enzyme-bound coenzyme F430 is reduced to the nickel(I) oxidation state by titanium(III) citrate. Eur J Biochem 243:110–114

    Article  CAS  Google Scholar 

  • Grabarse WG, Mahlert F, Shima S, Thauer RK, Ermler U (2000) Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: unusual amino acid modification, conservation and adaptation. J Mol Biol 303:329–344

    Article  CAS  PubMed  Google Scholar 

  • Grabarse W, Mahlert F, Duin EC, Goubeaud M, Shima S, Thauer RK, Lamzin V, Ermler U (2001) On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. J Mol Biol 309:315–330

    Article  CAS  PubMed  Google Scholar 

  • Gralnick JA, Newman DK (2007) Extracellular respiration. Mol Microbiol 65:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunsalus RP, Wolfe RS (1980) Methyl coenzyme-M reductase from Methanobacterium-thermoautotrophicum – resolution and properties of the components. J Biol Chem 255:1891–1895

    CAS  PubMed  Google Scholar 

  • Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462

    Article  CAS  PubMed  Google Scholar 

  • Harmer J, Finazzo C, Piskorski R, Bauer C, Jaun B, Duin EC, Goenrich M, Thauer RK, Van Doorslaer S, Schweiger A (2005) Spin density and coenzyme M coordination geometry of the ox1 form of methyl-coenzyme M reductase: a pulse EPR study. J Am Chem Soc 127:17744–17755

    Article  CAS  PubMed  Google Scholar 

  • Harmer J, Finazzo C, Piskorski R, Ebner S, Duin EC, Goenrich M, Thauer RK, Reiher M, Schweiger A, Hinderberger D, Jaun B (2008) A nickel hydride complex in the active site of methyl-coenzyme M reductase: implications for the catalytic cycle. J Am Chem Soc 130:10907–10920

    Article  CAS  PubMed  Google Scholar 

  • Haroon MF, Hu SH, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan ZG, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 501:567–570

    Article  CAS  Google Scholar 

  • Hedderich R, Whitman WB (2006) In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: volume 2: ecophysiology and biochemistry. Springer, New York, pp 1050–1079

    Google Scholar 

  • Hinderberger D, Piskorski RP, Goenrich M, Thauer RK, Schweiger A, Harmer J, Jaun B (2006) A nickel-alkyl bond in an inactivated state of the enzyme catalyzing methane formation. Angew Chem Int Ed 45:3602–3607

    Article  CAS  Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment – evidence for a methanogen-sulfate reducer consortium. Glob Biogeochem Cycles 8:451–463

    Article  CAS  Google Scholar 

  • Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs KU, Teske A, Boetius A, Wegener G (2011) Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J 5:1946–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iversen N, Jorgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30:944–955

    Article  CAS  Google Scholar 

  • Jaun B (1990) Coenzyme F430 from methanogenic bacteria: oxidation of F430 pentamethyl ester to the nickel(III) form. Helv Chim Acta 73:2209–2217

    Article  CAS  Google Scholar 

  • Jaun B, Pfaltz A (1986) Coenzyme F430 from methanogenic bacteria: reversible one-electron reduction of F430 pentamethyl ester to the nickel(I) form. J Chem Soc Chem Commun 17:1327–1329

    Article  Google Scholar 

  • Jaun B, Thauer RK (2007) Methyl-coenzyme M reductase and its nickel corphin coenzyme F430 in methanogenic archaea. Met Ions Life Sci 2:323–356

    CAS  Google Scholar 

  • Kahnt J, Buchenau B, Mahlert F, Kruger M, Shima S, Thauer RK (2007) Post-translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea. FEBS J 274:4913–4921

    Article  CAS  PubMed  Google Scholar 

  • Kaster AK, Moll J, Parey K, Thauer RK (2011) Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc Natl Acad Sci USA 108:2981–2986

    Article  PubMed  PubMed Central  Google Scholar 

  • Kletzin A, Heimerl T, Flechsler J, van Niftrik L, Rachel R, Klingl A (2015) Cytochromes c in archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Front Microbiol 6:439

    Article  PubMed  PubMed Central  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Moll J, Kahnt J, Fukui M, Shima S (2014) A reversed genetic approach reveals the coenzyme specificity and other catalytic properties of three enzymes putatively involved in anaerobic oxidation of methane with sulfate. Environ Microbiol 16:3431–3442

    Article  CAS  PubMed  Google Scholar 

  • Krüger M, Meyerdierks A, Glockner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Böcher R, Thauer RK, Shima S (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–881

    Article  CAS  PubMed  Google Scholar 

  • Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR, Adam B, Berg JS, Knittel K, Tegetmeyer HE, Boetius A, Wegener G (2016) Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol 18:3073–3091

    Article  CAS  PubMed  Google Scholar 

  • Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer HE, Riedel D, Richnow H, Adrian L, Reemtsma T, Lechtenfeld OJ, Musat F (2016) Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401

    Article  CAS  PubMed  Google Scholar 

  • Losekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR (2012) Electromicrobiology. Annu Rev Microbiol 66:391–409

    Article  CAS  PubMed  Google Scholar 

  • Luesken FA, Wu ML, Op den Camp HJM, Keltjens JT, Stunnenberg H, Francoijs K-J, Strous M, Jetten MSM (2012) Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis. Environ Microbiol 14:1024–1034

    Article  CAS  PubMed  Google Scholar 

  • Mayr S (2009) PhD thesis from Eidgenoessische Technische Hochschule, Diss ETH Nr. 18549, p 175 (Zurich)

    Google Scholar 

  • Mayr S, Latkoczy C, Kruger M, Gunther D, Shima S, Thauer RK, Widdel F, Jaun B (2008) Structure of an F430 variant from archaea associated with anaerobic oxidation of methane. J Am Chem Soc 130:10758–10767

    Article  CAS  PubMed  Google Scholar 

  • McGlynn SE (2017) Energy metabolism during anaerobic methane oxidation in ANME archaea. Microb Environ 32:5–13

    Google Scholar 

  • McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531–535

    Article  CAS  PubMed  Google Scholar 

  • Meulepas RJW, Jagersma CG, Gieteling J, Buisman CJN, Stams AJM, Lens PNL (2009) Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors. Biotechnol Bioeng 104:458–470

    Article  CAS  PubMed  Google Scholar 

  • Meulepas RJW, Jagersma CG, Khadem AF, Stams AJM, Lens PNL (2010) Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment. Appl Microbiol Biotechnol 87:1499–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glockner FO, Reinhardt R, Amann R (2010) Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol 12:422–439

    Article  CAS  PubMed  Google Scholar 

  • Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546

    Article  CAS  PubMed  Google Scholar 

  • Nauhaus K, Treude T, Boetius A, Krueger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol 7:98–106

    Article  CAS  PubMed  Google Scholar 

  • Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol 9:187–196

    Article  CAS  PubMed  Google Scholar 

  • Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland N-K, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306

    Article  CAS  Google Scholar 

  • Orcutt B, Meile C (2008) Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions. Biogeosciences 5:1587–1599

    Article  CAS  Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Article  CAS  PubMed  Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA 99:7663–7668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelmenschikov V, Siegbahn PEM (2003) Catalysis by methyl-coenzyme M reductase: a theoretical study for heterodisulfide product formation. J Biol Inorg Chem 8:653–662

    Article  CAS  PubMed  Google Scholar 

  • Pelmenschikov V, Blomberg MRA, Siegbahn PEM, Crabtree RH (2002) A mechanism from quantum chemical studies for methane formation in methanogenesis. J Am Chem Soc 124:4039–4049

    Article  CAS  PubMed  Google Scholar 

  • Pirbadian S, El-Naggar MY (2012) Multistep hopping and extracellular charge transfer in microbial redox chains. Phys Chem Chem Phys 14:13802–13808

    Article  CAS  PubMed  Google Scholar 

  • Prakash D, Wu YN, Suh SJ, Duin EC (2014) Elucidating the process of activation of methyl-coenzyme M reductase. J Bacteriol 196:2491–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  PubMed  Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    Article  CAS  PubMed  Google Scholar 

  • Rotaru A-E, Thamdrup B (2016) A new diet for methane oxidizers. Science 351:658–658

    Article  CAS  PubMed  Google Scholar 

  • Sarangi R, Dey M, Ragsdale SW (2009) Geometric and electronic structures of the Ni-I and methyl-Ni-III intermediates of methyl-coenzyme M reductase. Biochemistry 48:3146–3156

    Article  CAS  PubMed  Google Scholar 

  • Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–608

    Article  CAS  PubMed  Google Scholar 

  • Scheller S, Goenrich M, Thauer RK, Jaun B (2013a) Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M. J Am Chem Soc 135:14985–14995

    Article  CAS  PubMed  Google Scholar 

  • Scheller S, Goenrich M, Thauer RK, Jaun B (2013b) Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on the formation and anaerobic oxidation of methane. J Am Chem Soc 135:14975–14984

    Article  CAS  PubMed  Google Scholar 

  • Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351:703–707

    Article  CAS  PubMed  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  PubMed  Google Scholar 

  • Shima S (2014) Enzyme chemistry of methanogenesis and anaerobic oxidation of methane. Kagakutoseibutsu 52:307–312

    CAS  Google Scholar 

  • Shima S, Tziatzios C, Schubert D, Fukada H, Takahashi K, Ermler U, Thauer RK (1998) Lyotropic-salt-induced changes in monomer/dimer/tetramer association equilibrium of formyltransferase from the hyperthermophilic Methanopyrus kandleri in relation to the activity and thermostability of the enzyme. Eur J Biochem 258:85–92

    Article  CAS  PubMed  Google Scholar 

  • Shima S, Krueger M, Weinert T, Demmer U, Kahnt J, Thauer RK, Ermler U (2012) Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481:98–101

    Article  CAS  Google Scholar 

  • Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH (2012) Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ Microbiol 14:1333–1346

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK (2011) Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol 14:292–299

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  PubMed  Google Scholar 

  • Tietze M, Beuchle A, Lamla I, Orth N, Dehler M, Greiner G, Beifuss U (2003) Redox potentials of methanophenazine and CoB-S-S-CoM, factors involved in electron transport in methanogenic archaea. Chembiochem 4:333–335

    Article  CAS  PubMed  Google Scholar 

  • Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MSM, Stams AJM (2017) Reverse methanogenesis and respiration in methanotrophic archaea. Archaea 2017:1–22

    Article  CAS  Google Scholar 

  • Wagner T, Kahnt J, Ermler U, Shima S (2016a) Didehydroaspartate modification in methyl-coenzyme M reductase catalyzing methane formation. Angew Chem Int Ed 55:10630–10633

    Article  CAS  Google Scholar 

  • Wagner T, Ermler U, Shima S (2016b) The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354:114–117

    Article  CAS  PubMed  Google Scholar 

  • Wang FP, Zhang Y, Chen Y, He Y, Qi J, Hinrichs KU, Zhang XX, Xiao X, Boon N (2014) Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J 8:1069–1078

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Chen Y, Cao Q, Lou H (2015) Long-lasting gene conversion shapes the convergent evolution of the critical methanogenesis genes. G3 (Bethesda) 5:2475–2486

    Article  CAS  Google Scholar 

  • Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590

    Article  CAS  PubMed  Google Scholar 

  • Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K (2016) Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane. Front Microbiol 7:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Welte C, Deppenmeier U (2014) Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophys Acta (BBA) – Bioenerget 1837:1130–1147

    Article  CAS  Google Scholar 

  • Widdel F, Grundmann O (2010) In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 909–924

    Chapter  Google Scholar 

  • Wongnate T, Sliwa D, Ginovska B, Smith D, Wolf MW, Lehnert N, Raugei S, Ragsdale SW (2016) The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science 352:953–958

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Reiher M, Wang M, Harmer J, Duin EC (2007) Formation of a nickel-methyl species in methyl-coenzyme M reductase, an enzyme catalyzing methane formation. J Am Chem Soc 129:11028–11029

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvan Scheller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Scheller, S., Ermler, U., Shima, S. (2020). Catabolic Pathways and Enzymes Involved in Anaerobic Methane Oxidation. In: Boll, M. (eds) Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50391-2_3

Download citation

Publish with us

Policies and ethics