Skip to main content

Next-Generation Sequencing of Functional Marker Genes for Anaerobic Degraders of Petroleum Hydrocarbons in Contaminated Environments

  • Reference work entry
  • First Online:
Anaerobic Utilization of Hydrocarbons, Oils, and Lipids

Abstract

The anaerobic degradation of petroleum hydrocarbons is an important ecosystem service provided by microbes in systems impacted by pollution. Research in recent years has resulted in substantial advances in our understanding of the diversity and ecology of natural populations of anaerobic hydrocarbon degraders, both in marine and terrestrial sedimentary and subsurface habitats. Part of this research has been fueled by the development and optimization of specific functional marker genes for anaerobic hydrocarbon degraders, i.e., qualitative and quantitative molecular assays, allowing for the detection of key catabolic genes or transcripts involved in degradation. These include the so-called “fumarate-adding enzymes” benzylsuccinate synthase (bssA) and alkylsuccinate synthase (assA/masD) involved in the primary activation of alkanes and alkylated aromatic hydrocarbons under anaerobic conditions. Here, we summarize the most important advances in the field and highlight the appeal of recent next-generation sequencing-based approaches toward catabolic marker genes for in-depth degrader community dissection. This contributes to a more routine and thorough inspection of intrinsic degrader populations responsible for key catabolic services in systems contaminated with petroleum hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12:2783–2796

    CAS  PubMed  Google Scholar 

  • Abu Laban N, Dao A, Foght J (2015) DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions. FEMS Microbiol Ecol 91:fiv039

    Google Scholar 

  • Acosta-González A, Rosselló-Móra R, Marqués S (2013) Diversity of benzylsuccinate synthase-like (bssA) genes in hydrocarbon-polluted marine sediments suggests substrate-dependent clustering. Appl Environ Microbiol 79:3667–3676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aitken CM, Jones DM, Maguire MJ, Gray ND, Sherry A, Bowler BFJ, Ditchfield AK, Larter SR, Head IM (2013) Evidence that crude oil alkane activation proceeds by different mechanisms under sulfate-reducing and methanogenic conditions. Geochim Cosmochim Acta 109:162–174

    Article  CAS  Google Scholar 

  • Annweiler E, Materna A, Safinowski M, Kappler A, Richnow HH, Michaelis W, Meckenstock RU (2000) Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66:5329–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beller HR, Kane SR, Legler TC, Alvarez PJ (2002) A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol 36:3977–3984

    Article  CAS  PubMed  Google Scholar 

  • Beller HR, Kane SR, Legler TC, McKelvie JR, Sherwood Lollar B, Pearson F, Balser L, Mackay DM (2008) Comparative assessments of benzene, toluene, and xylene natural attenuation by quantitative polymerase chain reaction analysis of a catabolic gene, signature metabolites, and compound-specific isotope analysis. Environ Sci Technol 42:6065–6072

    Article  CAS  PubMed  Google Scholar 

  • Benedek T, Táncsics A, Szabó I, Farkas M, Szoboszlay S, Fábián K, Maróti G, Kriszt B (2016) Polyphasic analysis of an Azoarcus-Leptothrix-dominated bacterial biofilm developed on stainless steel surface in a gasoline-contaminated hypoxic groundwater. Environ Sci Pollut Res 23:9019–9035

    Article  CAS  Google Scholar 

  • Benítez-Páez A, Portune KJ, Sanz Y (2016) Species-level resolution of 16S rRNA gene amplicons sequenced through the MinION™ portable nanopore sequencer. GigaScience 5:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann F, Selesi D, Meckenstock R (2011) Identification of new enzymes potentially involved in anaerobic naphthalene degradation by the sulfate-reducing enrichment culture N47. Arch Microbiol 193:241–250

    Article  CAS  PubMed  Google Scholar 

  • Biegert T, Fuchs G, Heider J (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 238:661–668

    Article  CAS  PubMed  Google Scholar 

  • Boll M, Löffler C, Morris BEL, Kung JW (2014) Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 16:612–627

    Article  CAS  PubMed  Google Scholar 

  • Brow CN, O’Brien Johnson R, Johnson RL, Simon HM (2013) Assessment of anaerobic toluene biodegradation activity by bssA transcript/gene ratios. Appl Environ Microbiol 79:5338–5344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callaghan AV (2013a) Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Front Microbiol 4(89)

    Google Scholar 

  • Callaghan AV (2013b) Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Curr Opin Biotechnol 24:506–515

    Article  CAS  PubMed  Google Scholar 

  • Callaghan AV, Wawrik B (2016) AnHyDeg: a curated database of anaerobic hydrocarbon degradation genes. https://doi.org/10.5281/zenodo.61278. https://github.com/AnaerobesRock/AnHyDeg/tree/v1.0

  • Callaghan AV, Wawrik B, Ní Chadhain SM, Young LY, Zylstra GJ (2008) Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem Biophys Res Commun 366:142–148

    Article  CAS  PubMed  Google Scholar 

  • Callaghan AV, Davidova IA, Savage-Ashlock K, Parisi VA, Gieg LM, Suflita JM, Kukor JJ, Wawrik B (2010) Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ Sci Technol 44:7287–7294

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amore R, Ijaz UZ, Schirmer M, Kenny JG, Gregory R, Darby AC, Shakya M, Podar M, Quince C, Hall N (2016) A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genomics 17(55)

    Google Scholar 

  • Daghio M, Vaiopoulou E, Patil SA, Suárez-Suárez A, Head IM, Franzetti A, Rabaey K (2016) Anodes stimulate anaerobic toluene degradation via sulfur cycling in marine sediments. Appl Environ Microbiol 82:297–307

    Article  CAS  PubMed  Google Scholar 

  • Dorer C, Vogt C, Neu TR, Stryhanyuk H, Richnow H-H (2016) Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis. Environ Pollut 211:271–281

    Article  CAS  PubMed  Google Scholar 

  • Fahrenfeld N, Cozzarelli I, Bailey Z, Pruden A (2014) Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume. Microbial Ecol 68:453–462

    Article  CAS  Google Scholar 

  • Fish J, Chai B, Wang Q, Sun Y, Brown CT, Tiedje J, Cole J (2013) FunGene: the functional gene pipeline and repository. Front Microbiol 4:291

    Article  PubMed  PubMed Central  Google Scholar 

  • Fowler SJ, Dong X, Sensen CW, Suflita JM, Gieg LM (2012) Methanogenic toluene metabolism: community structure and intermediates. Environ Microbiol 14:754–764

    Article  CAS  PubMed  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9:803–816

    Article  CAS  PubMed  Google Scholar 

  • Gittel A, Donhauser J, Røy H, Girguis PR, Jørgensen BB, Kjeldsen KU (2015) Ubiquitous presence and novel diversity of anaerobic alkane degraders in cold marine sediments. Front Microbiol 6:1414

    Article  PubMed  PubMed Central  Google Scholar 

  • Grbić-Galić D, Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53:254–260

    Article  PubMed  PubMed Central  Google Scholar 

  • Grundmann O, Behrends A, Rabus R, Amann J, Halder T, Heider J, Widdel F (2008) Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ Microbiol 10:376–385

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Schühle K (2013) Anaerobic biodegradation of hydrocarbons including methane. In: Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin/Heidelberg, pp 605–634

    Chapter  Google Scholar 

  • Heider J, Szaleniec M, Martins BM, Seyhan D, Buckel W, Golding BT (2016a) Structure and function of benzylsuccinate synthase and related fumarate-adding glycyl radical enzymes. J Mol Microbiol Biotechnol 26:29–44

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Szaleniec M, Sünwoldt K, Boll M (2016b) Ethylbenzene dehydrogenase and related molybdenum enzymes involved in oxygen-independent alkyl chain hydroxylation. J Mol Microbiol Biotechnol 26:45–62

    Article  CAS  PubMed  Google Scholar 

  • Higashioka Y, Kojima H, Sato S, Fukui M (2009) Microbial community analysis at crude oil-contaminated soils targeting the 16S ribosomal RNA, xylM, C23O, and bcr genes. J Appl Microbiol 107:126–135

    Article  CAS  PubMed  Google Scholar 

  • Higashioka Y, Kojima H, Fukui M (2011) Temperature-dependent differences in community structure of bacteria involved in degradation of petroleum hydrocarbons under sulfate-reducing conditions. J Appl Microbiol 110:314–322

    Article  CAS  PubMed  Google Scholar 

  • Hosoda A, Kasai Y, Hamamura N, Takahata Y, Watanabe K (2005) Development of a PCR method for the detection and quantification of benzoyl-CoA reductase genes and its application to monitored natural attenuation. Biodegradation 16:591–601

    Article  CAS  PubMed  Google Scholar 

  • Johnson JM, Wawrik B, Isom C, Boling WB, Callaghan AV (2015) Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions. FEMS Microbiol Ecol 91:1–14

    Article  CAS  PubMed  Google Scholar 

  • Karst SM, Dueholm MS, McIlroy SJ, Kirkegaard RH, Nielsen PH, Albertsen M (2016) Thousands of primer-free, high-quality, full-length SSU rRNA sequences from all domains of life. bioRxiv. https://doi.org/10.1101/070771

  • Kimes NE, Callaghan AV, Aktas DF, Smith WL, Sunner J, Golding BT, Drozdowska M, Hazen TC, Suflita JM, Morris PJ (2013) Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 4:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuntze K, Shinoda Y, Moutakki H, McInerney MJ, Vogt C, Richnow H-H, Boll M (2008) 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ Microbiol 10:1547–1556

    Article  CAS  PubMed  Google Scholar 

  • Kuntze K, Vogt C, Richnow H-H, Boll M (2011) Combined application of PCR-based functional assays for the detection of aromatic-compound-degrading anaerobes. Appl Environ Microbiol 77:5056–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Ren H, Yin E, Tang S, Li Y, Cao J (2015) Pilot-scale study on nitrogen and aromatic compounds removal in printing and dyeing wastewater by reinforced hydrolysis-denitrification coupling process and its microbial community analysis. Environ Sci Pollut Res 22:9483–9493

    Article  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lueders T (2017) The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers. FEMS Microbiol Ecol 93:fiw220

    Article  CAS  PubMed  Google Scholar 

  • Lueders T, von Netzer F (2014) Primers: functional genes for anaerobic hydrocarbon degrading microbes. In: TJ MG et al (eds) Hydrocarbon and lipid microbiology protocols, Springer Protocols Handbooks. Springer, Berlin/Heidelberg. https://doi.org/10.1007/8623_2014_1044

    Chapter  Google Scholar 

  • Lüke C, Frenzel P (2011) Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. Appl Environ Microbiol 77:6305–6309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One 7:e30087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo F, Gitiafroz R, Devine CE, Gong Y, Hug LA, Raskin L, Edwards EA (2014) Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Appl Environ Microbiol 80:4095–4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martirani-Von Abercron S-M, Pacheco D, Benito-Santano P, Marín P, Marqués S (2016) Polycyclic aromatic hydrocarbon-induced changes in bacterial community structure under anoxic nitrate reducing conditions. Front Microbiol 7:1775

    Article  PubMed  PubMed Central  Google Scholar 

  • Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Cunha Tarouco P, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118

    Article  CAS  PubMed  Google Scholar 

  • Morris BEL, Gissibl A, Kümmel S, Richnow H-H, Boll M (2014) A PCR-based assay for the detection of anaerobic naphthalene degradation. FEMS Microbiol Lett 354:55–59

    Article  CAS  PubMed  Google Scholar 

  • Mouttaki H, Johannes J, Meckenstock RU (2012) Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environ Microbiol 14:2770–2774

    Article  CAS  PubMed  Google Scholar 

  • Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11:209–219

    Article  CAS  PubMed  Google Scholar 

  • Oka AR, Phelps CD, Zhu X, Saber DL, Young LY (2011) Dual biomarkers of anaerobic hydrocarbon degradation in historically contaminated groundwater. Environ Sci Technol 45:3407–3414

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Vegan: community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists., R package version: 2.4–2 edn. https://cran.r-project.org/web/packages/vegan/

  • Osman OA, Gudasz C, Bertilsson S (2014) Diversity and abundance of aromatic catabolic genes in lake sediments in response to temperature change. FEMS Microbiol Ecol 88:468–481

    Article  CAS  PubMed  Google Scholar 

  • Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14:525–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippot L, Spor A, Henault C, Bru D, Bizouard F, Jones CM, Sarr A, Maron P-A (2013) Loss in microbial diversity affects nitrogen cycling in soil. ISME J 7:1609–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilloni G, von Netzer F, Engel M, Lueders T (2011) Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiol Ecol 78:165–175

    Article  CAS  PubMed  Google Scholar 

  • Pilloni G, Granitsiotis MS, Engel M, Lueders T (2012) Testing the limits of 454 pyrotag sequencing: reproducibility, quantitative assessment and comparison to T-RFLP fingerprinting of aquifer microbes. PLoS One 7:e40467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter AW, Young LY (2013) The bamA gene for anaerobic ring fission is widely distributed in the environment. Front Microbiol 4:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter AW, Young LY (2014) Benzoyl-CoA, a universal biomarker for anaerobic degradation of aromatic compounds. In: Sariaslani S, Gadd GM (eds) Adv Appl Microbiol, vol 88. Academic Press, London, UK, pp 167–203

    Google Scholar 

  • Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, Ermler U, Golding BT, Gunsalus RP, Kroneck PMH, Krüger M, Lueders T, Martins BM, Musat F, Richnow HH, Schink B, Seifert J, Szaleniec M, Treude T, Ullmann GM, Vogt C, von Bergen M, Wilkes H (2016) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol 26:5–28

    Article  CAS  PubMed  Google Scholar 

  • Ranchou-Peyruse M, Gasc C, Guignard M, Aüllo T, Dequidt D, Peyret P, Ranchou-Peyruse A (2016) The sequence capture by hybridization: a new approach for revealing the potential of mono-aromatic hydrocarbons bioattenuation in a deep oligotrophic aquifer. Microb Biotechnol 10:469–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaio DS, Almeida JRB, de Jesus HE, Rosado AS, Seldin L, Jurelevicius D (2017) Distribution of anaerobic hydrocarbon-degrading bacteria in soils from King George Island, Maritime Antarctica. Microbial Ecol 74:810–820

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Jenior ML, Koumpouras CC, Westcott SL, Highlander SK (2016) Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. Peer J 4:e1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scoma A, Yakimov MM, Daffonchio D, Boon N (2017) Self-healing capacity of deep-sea ecosystems affected by petroleum hydrocarbons: understanding microbial oil degradation at hydrocarbon seeps is key to sustainable bioremediation protocols. EMBO Rep 18:868–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song B, Ward BB (2005) Genetic diversity of benzoyl coenzyme-A reductase genes detected in denitrifying isolates and estuarine sediment communities. Appl Environ Microbiol 71:2036–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer SJ, Tamminen MV, Preheim SP, Guo MT, Briggs AW, Brito IL, Weitz DA, Pitkanen LK, Vigneault F, Virta MP, Alm EJ (2016) Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J 10:427–436

    Article  CAS  PubMed  Google Scholar 

  • Staats M, Braster M, Röling WFM (2011) Molecular diversity and distribution of aromatic hydrocarbon-degrading anaerobes across a landfill leachate plume. Environ Microbiol 13:1216–1227

    Article  CAS  PubMed  Google Scholar 

  • Stagars MH, Ruff SE, Amann R, Knittel K (2016) High diversity of anaerobic alkane-degrading microbial communities in marine seep sediments based on (1-methylalkyl)succinate synthase genes. Front Microbiol 6:1511

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, Sun X, Cupples A (2014) Presence, diversity and enumeration of functional genes (bssA and bamA) relating to toluene degradation across a range of redox conditions and inoculum sources. Biodegradation 25:189–203

    Article  CAS  PubMed  Google Scholar 

  • von Netzer F, Pilloni G, Kleindienst S, Krüger M, Knittel K, Gründger F, Lueders T (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552

    Article  CAS  Google Scholar 

  • von Netzer F, Kuntze K, Vogt C, Richnow HH, Boll M, Lueders T (2016) Functional gene markers for fumarate-adding and dearomatizing key enzymes in anaerobic aromatic hydrocarbon degradation in terrestrial environments. J Mol Microbiol Biotechnol 26:180–194

    Article  CAS  Google Scholar 

  • Wagner J, Coupland P, Browne HP, Lawley TD, Francis SC, Parkhill J (2016) Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbiol 16:274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallisch S, Gril T, Dong X, Welzl G, Bruns C, Heath E, Engel M, Suhadolc M, Schloter M (2014) Influence of compost amendments on the diversity of alkane degrading bacteria in hydrocarbon contaminated soils. Front Microbiol 5(96)

    Google Scholar 

  • Weelink SAB, van Eekert MHA, Stams AJM (2010) Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Biotechnol 9:359–385

    Article  CAS  Google Scholar 

  • Widdel F, Knittel K, Galushko A (2010) Anaerobic hydrocarbon-degrading microorganisms: an overview. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1997–2021

    Chapter  Google Scholar 

  • Wilkes H, Buckel W, Golding BT, Rabus R (2016) Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria. J Mol Microbiol Biotechnol 26:138–151

    Article  CAS  PubMed  Google Scholar 

  • Winderl C, Schaefer S, Lueders T (2007) Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol 9:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801

    Article  CAS  PubMed  Google Scholar 

  • Winderl C, Penning H, von Netzer F, Meckenstock RU, Lueders T (2010) DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment. ISME J 4:1314–1325

    Article  PubMed  Google Scholar 

  • Yagi JM, Suflita JM, Gieg LM, DeRito CM, Jeon C-O, Madsen EL (2010) Subsurface cycling of nitrogen and anaerobic aromatic hydrocarbon biodegradation revealed by nucleic acid and metabolic biomarkers. Appl Environ Microbiol 76:3124–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Lueders T (2017) Micropredator niche differentiation between bulk soil and rhizosphere of an agricultural soil depends on bacterial prey. FEMS Microbiol Ecol 93:fix103

    Article  CAS  Google Scholar 

  • Zhang B, Penton CR, Xue C, Wang Q, Zheng T, Tiedje JM (2015) Evaluation of the Ion Torrent Personal Genome Machine for gene-targeted studies using amplicons of the nitrogenase gene nifH. Appl Environ Microbiol 81:4536–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Deutsche Forschungsgemeinschaft (DFG) for the support of parts of the research summarized and presented here within the Priority Programme “Biological transformation of hydrocarbons in the absence of oxygen” (SPP 1319, grants LU 118/4-1 and 4-2). We also acknowledge support of the Helmholtz Society within the “Helmholtz Wasserzentrum München.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tillmann Lueders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

von Netzer, F., Granitsiotis, M.S., Szalay, A.R., Lueders, T. (2020). Next-Generation Sequencing of Functional Marker Genes for Anaerobic Degraders of Petroleum Hydrocarbons in Contaminated Environments. In: Boll, M. (eds) Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50391-2_15

Download citation

Publish with us

Policies and ethics