Skip to main content

Fundamental Atomic Insight in Electrocatalysis

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Electrochemical energy conversion reactions depend on the atomic structure of the interface between the electrode and the electrolyte. In order to make advances in technology, atomic-scale simulations are needed to provide insight and fundamental understanding of the electrocatalytic reactions. Thus electronic structure calculations relevant for electrocatalysis have attracted a lot of attention in the last decade. However, it is not straightforward to translate state of the art simulations into electrocatalysis. As the simulations normally are done at constant number of ions and electrons rather than at constant potential and constant pH, which represent the real physical conditions. In fact, due to this, the electrochemical interface presents one of the frontiers for electronic structure simulations.

In this chapter we describe how standard simulations can provide atomic-scale understanding of electrocatalytic reactions. We introduce the computational version of reference electrodes, which are key in the interpretation of simulations. Furthermore, the reference electrodes are used to create phase diagrams and reaction free energy diagrams for electrocatalytic reactions. The chapter will focus on simulations which can be done without any special implementation of the electronic structure method. This means that we focus on explicit solvent and charge-neutral interfaces. The connection to the electrode potential is introduced in the analysis of the simulations rather than in the simulations themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andreussi O, Dabo I, Marzari N (2012) Revised self-consistent continuum solvation in electronic-structure calculations. J Chem Phys 136(6):064102

    Article  ADS  Google Scholar 

  • Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J (2017a) Electrochemical CO2 reduction: a classification problem. ChemPhysChem 18:3266–3273

    Article  Google Scholar 

  • Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J (2017b) Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catal Today 288:74–78

    Article  Google Scholar 

  • Björketun ME, Zeng Z, Ahmed R, Tripkovic V, Thygesen KS, Rossmeisl J (2013) Avoiding pitfalls in the modeling of electrochemical interfaces. Chem Phys Lett 555(Supplement C):145–148

    Article  ADS  Google Scholar 

  • Broqvist P, Panas I, Fridell E, Persson H (2002) NOxStorage on BaO(100) surface from first principles: a two channel scenario. J Phys Chem B 106(1):137–145

    Article  Google Scholar 

  • Busch M, Halck NB, Kramm UI, Siahrostami S, Krtil P, Rossmeisl J (2016) Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 29:126–135. Electrocatalysis

    Article  Google Scholar 

  • Castelli IE, Thygesen KS, Jacobsen KW (2014) Calculated Pourbaix diagrams of cubic perovskites for water splitting: stability against corrosion. Top Catal 57(1):265–272

    Article  Google Scholar 

  • Castelli IE, Man I-C, Soriga S-G, Parvulescu V, Halck NB, Rossmeisl J (2017) Role of the band gap for the interaction energy of coadsorbed fragments. J Phys Chem C 121(34):18608–18614

    Article  Google Scholar 

  • Chan K, Nørskov JK (2015) Electrochemical barriers made simple. J Phys Chem Lett 6(14):2663–2668

    Article  Google Scholar 

  • Charles MH (1889) Process of reducing aluminium from its fluoride salts by electrolysis, 2 Apr 1889. US Patent 400,664

    Google Scholar 

  • Chen LD, Urushihara M, Chan K, Nørskov JK (2016) Electric field effects in electrochemical CO2 reduction. ACS Catal 6(10):7133–7139

    Article  Google Scholar 

  • Cheng J, Sprik M (2010) Aligning electronic energy levels at the tio2∕h2O interface. Phys Rev B 82:081406

    Google Scholar 

  • Christensen R, Hansen HA, Vegge T (2015) Identifying systematic DFT errors in catalytic reactions. Catal Sci Technol 5:4946–4949

    Article  Google Scholar 

  • Doyle AD, Montoya JH, Vojvodic A (2015) Improving oxygen electrochemistry through nanoscopic confinement. ChemCatChem 7(5):738–742

    Article  Google Scholar 

  • Dupont C, Andreussi O, Marzari N (2013) Self-consistent continuum solvation (SCCS): the case of charged systems. J Chem Phys 139(21):214110

    Article  ADS  Google Scholar 

  • Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Hakkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys Condens Matter 22(25):253202

    ADS  Google Scholar 

  • Fernández EM, Moses PG, Toftelund A, Hansen HA, Martínez JI, Abild-Pedersen F, Kleis J, Hinnemann B, Rossmeisl J, Bligaard T, Nørskov JK (2008) Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew Chem Int Ed 47(25):4683–4686

    Article  Google Scholar 

  • Halck NB, Petrykin V, Krtil P, Rossmeisl J (2014) Beyond the volcano limitations in electrocatalysis – oxygen evolution reaction. Phys Chem Chem Phys 16:13682–13688

    Article  Google Scholar 

  • Hamada I, Sugino O, Bonnet N, Otani M (2013) Improved modeling of electrified interfaces using the effective screening medium method. Phys Rev B 88:155427

    Google Scholar 

  • Hansen MH, Rossmeisl J (2016) pH in grand canonical statistics of an electrochemical interface. J Phys Chem C 120(51):29135–29143

    Article  Google Scholar 

  • Hansen HA, Rossmeisl J, Nørskov JK (2008) Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys Chem Chem Phys 10(25):3722

    Article  Google Scholar 

  • Hansen MH, Nilsson A, Rossmeisl J (2017) Modelling pH and potential in dynamic structures of the water/Pt(111) interface on the atomic scale. Phys Chem Chem Phys 19:23505–23514

    Article  Google Scholar 

  • Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985

    Article  ADS  Google Scholar 

  • Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Article  ADS  Google Scholar 

  • Herron JA, Morikawa Y, Mavrikakis M (2016) Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces. Proc Natl Acad Sci USA 113:E4937–E4945

    Article  ADS  Google Scholar 

  • Hori Y, Murata A, Takahashi R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc Faraday Trans 85:2309–2326

    Article  Google Scholar 

  • Hu Z, Metiu H (2012) Halogen adsorption on CeO2: the role of Lewis acid-base pairing. J Phys Chem C 116(11):6664–6671

    Article  Google Scholar 

  • Jinnouchi R, Anderson AB (2008a) Aqueous and surface redox potentials from self-consistently determined Gibbs energies. J Phys Chem C 112(24):8747–8750

    Article  Google Scholar 

  • Jinnouchi R, Anderson AB (2008b) Electronic structure calculations of liquid-solid interfaces: combination of density functional theory and modified Poisson-Boltzmann theory. Phys Rev B 77:245417

    Google Scholar 

  • Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In Classical and Quantum Dynamics in Condensed Phase Simulations, edited by: Bruce J Berne (Columbia University), Giovanni Ciccotti (Universita Roma “La Sapienza”), and David F Coker (Boston University), World Scientific, pp 385–404

    Google Scholar 

  • Ju W, Bagger A, Hao G-P, Varela AS, Sinev I, Bon V, Roldan Cuenya B, Kaskel S, Rossmeisl J Strasser P, (2017) Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat Commun, 8(944):2041–1723

    Google Scholar 

  • Karlberg GS, Rossmeisl J, Norskov JK (2007a) Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Phys Chem Chem Phys 9:5158–5161

    Article  Google Scholar 

  • Karlberg GS, Jaramillo TF, Skúlason E, Rossmeisl J, Bligaard T, Nørskov JK (2007b) Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles. Phys Rev Lett 99:126101

    Google Scholar 

  • Kötz ER, Neff H, Müller K (1986) A UPS, XPS and work function study of emersed silver, platinum and gold electrodes. J Electroanal Chem Interfacial Electrochem 215(1):331–344

    Article  Google Scholar 

  • Larentzos JP, Criscenti LJ (2008) A molecular dynamics study of alkaline earth metal-chloride complexation in aqueous solution. J Phys Chem B 112(45):14243–14250

    Article  Google Scholar 

  • Larsen AH, Vanin M, Mortensen JJ, Thygesen KS, Jacobsen KW (2009) Localized atomic basis set in the projector augmented wave method. Phys Rev B 80(19):195112

    Google Scholar 

  • Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Dulak M, Friis J, Groves MN, Hammer B, Hargus C, Hermes ED, Jennings PC, Jensen PB, Kermode J, Kitchin JR, Kolsbjerg EL, Kubal J, Kaasbjerg K, Lysgaard S, Maronsson JB, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiøtz J, Schütt O, Strange M, Thygesen KS, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen KW (2017) The atomic simulation environment—a python library for working with atoms. J Phys Condens Matter 29(27):273002

    Google Scholar 

  • Li B, Metiu H (2012) Does halogen adsorption activate the oxygen atom on an oxide surface? I. A study of Br2 and HBr adsorption on La2O3 and La2O3 doped with Mg or Zr. J Phys Chem C 116(6):4137–4148

    Google Scholar 

  • Liang T, Cheng Y-T, Nie X, Luo W, Asthagiri A, Janik MJ, Andrews E, Flake J, Sinnott SB (2014) Molecular dynamics simulations of CO2 reduction on Cu(111) and Cu/ZnO(1010) using charge optimized many body potentials. Catal Commun 52(Supplement C):84–87

    Article  Google Scholar 

  • Liu X, Xiao J, Peng H, Hong X, Chan K, Nørskov JK (2017) Understanding trends in electrochemical carbon dioxide reduction rates. Nat Commun 8:15438

    Article  ADS  Google Scholar 

  • Lozovoi AY, Alavi A, Kohanoff J, Lynden-Bell RM (2001) Ab initio simulation of charged slabs at constant chemical potential. J Chem Phys 115(4):1661–1669

    Article  ADS  Google Scholar 

  • Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7):1159–1165

    Article  Google Scholar 

  • Marković NM, Schmidt TJ, Stamenković V, Ross PN (2001) Oxygen reduction reaction on pt and pt bimetallic surfaces: a selective review. Fuel Cells 1(2):105–116

    Article  Google Scholar 

  • Ménétrey M, Markovits A, Minot C (2007) Adsorption of chlorine and oxygen atoms on clean and defective rutile-TiO2 (110) and MgO (100) surfaces. J Mol Struct Theochem 808(1–3):71–79

    Article  Google Scholar 

  • Merlet C, Limmer DT, Salanne M, van Roij R, Madden PA, Chandler D, Rotenberg B (2014) The electric double layer has a life of its own. J Phys Chem C 118(32):18291–18298

    Article  Google Scholar 

  • Metiu H, Chrétien S, Hu Z, Li B, Sun X (2012) Chemistry of Lewis acid-base pairs on oxide surfaces. J Phys Chem C 116(19):10439–10450

    Article  Google Scholar 

  • Mistry H, Choi Y-W, Bagger A, Scholten F, Bonifacio C, Sinev I, Divins NJ, Zegkinoglou I, Jeon HS, Kisslinger K, Stach EA, Yang JC, Rossmeisl J, Cuenya BR (2017) Enhanced carbon dioxide electroreduction to carbon monoxide over defect rich plasma-activated silver catalysts. Angewandte Chemie International Edition

    Google Scholar 

  • Montoya JH, Tsai C, Vojvodic A, Nørskov JK (2015) The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 8(13):2180–2186

    Article  Google Scholar 

  • Mortensen JJ, Hansen LB, Jacobsen KW (2005) Real-space grid implementation of the projector augmented wave method. Phys Rev B 71(3):035109

    Article  ADS  Google Scholar 

  • Nie X, Luo W, Janik MJ, Asthagiri A (2014) Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J Catal 312(Supplement C):108–122

    Article  Google Scholar 

  • Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. Electrochem Soc J 152(2):J23–J26

    Article  Google Scholar 

  • Nørskov JK, Studt F, Abild-Pedersen F, Bligaard T (2014) Fundamental concepts in heterogeneous catalysis. Wiley, Hoboken

    Book  Google Scholar 

  • Persson KA, Waldwick B, Lazic P, Ceder G (2012) Prediction of solid-aqueous equilibria: scheme to combine first-principles calculations of solids with experimental aqueous states. Phys Rev B 85:235438

    Article  ADS  Google Scholar 

  • Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315

    Article  Google Scholar 

  • Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Pergamon Press: Oxford, London, Edinburgh, New York, Toronto, Paris, Frankfurt

    Google Scholar 

  • Reuter K, Scheffler M (2001) Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys Rev B 65:035406

    Article  ADS  Google Scholar 

  • Reuter K, Scheffler M (2003) First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys Rev Lett 90:046103

    Article  ADS  Google Scholar 

  • Rossmeisl J, Nørskov JK, Taylor CD, Janik MJ, Neurock M (2006) Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J Phys Chem B 110(43):21833–21839

    Article  Google Scholar 

  • Rossmeisl J, Skulason E, Björketun ME, Tripkovic V, Nørskov JK (2008) Modeling the electrified solid-liquid interface. Chem Phys Lett 466(1):68–71

    Article  ADS  Google Scholar 

  • Rossmeisl J, Karlberg GS, Jaramillo T, Nørskov JK (2009) Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss 140:337–346

    Article  ADS  Google Scholar 

  • Rossmeisl J, Chan K, Ahmed R, Tripkovic V, Björketun ME (2013) pH in atomic scale simulations of electrochemical interfaces. Phys Chem Chem Phys 15:10321–10325

    Article  Google Scholar 

  • Sakong S, Gross A (2016) The importance of the electrochemical environment in the electro-oxidation of methanol on Pt(111). ACS Catal 6(8):5575–5586

    Article  Google Scholar 

  • Schnur S, Groß A (2009) Properties of metal-water interfaces studied from first principles. New J Phys 11(12):125003

    Article  Google Scholar 

  • Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321):eaad4998

    Article  Google Scholar 

  • Sergeev AV, Chertovich AV, Itkis DM, Sen A, Gross A, Khokhlov AR (2017) Electrode/electrolyte interface in the Li-O2 battery: insight from molecular dynamics study. J Phys Chem C 121(27):14463–14469

    Article  Google Scholar 

  • Shi C, Chan K, Yoo JS, Nørskov JK (2016) Barriers of electrochemical CO2 reduction on transition metals. Org Process Res Dev 20(8):1424–1430

    Article  Google Scholar 

  • Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B, Escudero-Escribano M, Paoli EA, Frydendal R, Hansen TW, Chorkendorff I, Stephens IEL, Rossmeisl J (2013) Enabling direct H2O2 production through rational electrocatalyst design. Nat Mater 12(12):1137–1143

    Article  ADS  Google Scholar 

  • Skulason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jonsson H, Norskov JK (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the pt(111) electrode. Phys Chem Chem Phys 9:3241–3250

    Article  Google Scholar 

  • Skulason E, Jonsson H, Nørskov JK, Bligaard T (2009) Electro-catalytic reactions using density functional theory calculations. PhD thesis, Technical University of Denmark (DTU), 10

    Google Scholar 

  • Skulason E, Tripkovic V, Björketun ME, Gudmundsdottir S, Karlberg G, Rossmeisl J, Bligaard T, Jonsson H, Nørskov JK (2010) Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C 114(42):18182–18197

    Article  Google Scholar 

  • Spohr E (1989) Computer simulation of the water/platinum interface. J Phys Chem 93(16):6171–6180

    Article  Google Scholar 

  • Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas AP, Stamenkovic VR, Markovic NM (2013) Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chem 5:300–306

    Article  Google Scholar 

  • Trasatti S (1986) The absolute electrode potential: an explanatory note (recommendations 1986). J Electroanal Chem Interfacial Electrochem 209(2):417–428

    Article  Google Scholar 

  • Viswanathan V, Hansen HA, Rossmeisl J, Nørskov JK (2012) Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal 2(8):1654–1660

    Article  Google Scholar 

  • Yeh K-Y, Janik MJ, Maranas JK (2013) Molecular dynamics simulations of an electrified water/Pt(111) interface using point charge dissociative water. Electrochim Acta 101(Supplement C):308–325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Rossmeisl .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bagger, A., Castelli, I.E., Hansen, M.H., Rossmeisl, J. (2018). Fundamental Atomic Insight in Electrocatalysis. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_8-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics