Skip to main content

Multiscale Modeling of Malaria-Infected Red Blood Cells

  • Living reference work entry
  • First Online:

Abstract

Malaria is a parasitic disease which takes approximately half a million lives every year. The unicellular parasites are transmitted by mosquitoes and mainly affect vascular blood flow by invading red blood cells (RBCs). The pathogenicity of malaria primarily results from substantial changes in the stiffness of infected RBCs and their ability to adhere to endothelial cells and other circulating blood cells, leading to a substantial disruption of normal blood circulation and inflammation of the vascular endothelium. Multiscale modeling of malaria has proved to contribute significantly to the understanding of this devastating disease. In particular, modeling on the level of single infected RBCs allows quantification of their mechanics, cytoadherence, and individual as well as collective behavior in blood flow. Recent modeling advances in this direction are discussed. We show how computational models in malaria are validated and used for the interpretation of experimental observations or the establishment of new physical hypotheses. Such computational models have a strong potential to elucidate a number of physical mechanisms relevant for malaria and to aid in the development of novel diagnostic tools and treatment strategies.

This is a preview of subscription content, log in via an institution.

References

  • Abkarian M, Massiera G, Berry L, Roques M, Braun-Breton C (2011) A novel mechanism for egress of malarial parasites from red blood cells. Blood 117:4118–4124

    Article  Google Scholar 

  • Adams S, Brown H, Turner G (2002) Breaking down the blood-brain barrier: signaling a path to cerebral malaria? Trends Parasitol 18:360–366

    Article  Google Scholar 

  • Angrisano F, Riglar DT, Sturm A, Volz JC, Delves MJ, Zuccala ES, Turnbull L, Dekiwadia C, Olshina MA, Marapana DS, Wong W, Mollard V, Bradin CH, Tonkin CJ, Gunning PW, Ralph SA, Whitchurch CB, Sinden RE, Cowman AF, McFadden GI, Baum J (2006) Spatial localization of actin filaments across developmental stages of the malaria parasite. PLoS ONE 7:e32188

    Article  ADS  Google Scholar 

  • Bahrami AH, Lipowsky R, Weikl TR (2016) The role of membrane curvature for the wrapping of nanoparticles. Soft Matter 12:581–587

    Article  ADS  Google Scholar 

  • Bannister LH, Mitchell GH, Butcher GA, Dennis ED (1986) Lamellar membranes associated with rhoptries in erythrocytic merozoites of Plasmodium knowlesi: a clue to the mechanism of invasion. Parasitology 92:291–303

    Article  Google Scholar 

  • Baum J, Papenfuss AT, Baum B, Speed TP, Cowman AF (2006) Regulation of apicomplexan actin-based motility. Nat Rev Microbiol 4:621–628

    Article  Google Scholar 

  • Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    Article  ADS  Google Scholar 

  • Betz T, Sykes C (2012) Time resolved membrane fluctuation spectroscopy. Soft Matter 8:5317–5326

    Article  ADS  Google Scholar 

  • Betz T, Lenz M, Joanny JF, Sykes C (2009) ATP-dependent mechanics of red blood cells. Proc Natl Acad Sci USA 106:15320–15325

    Article  ADS  Google Scholar 

  • Bow H, Pivkin IV, Diez-Silva M, Goldfless SJ, Dao M, Niles JC, Suresh S, Han J (2011) A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11:1065–1073

    Article  Google Scholar 

  • Brown H, Hien TT, Day N, Mai NTH, Chuong LV, Chau TTH, Loc PP, Phu NH, Bethell D, Farrar J, Gatter K, White N, Turner G (1999) Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 25:331–340

    Article  Google Scholar 

  • Cichocki B, Jones RB (1998) Image representation of a spherical particle near a hard wall. Phys A 258:273–302

    Article  Google Scholar 

  • Cowman AF, Berry D, Baum J (2012) The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol 198:961–971

    Article  Google Scholar 

  • Cranston HA, Boylan CW, Carroll GL, Sutera SP, Williamson JR, Gluzman IY, Krogstad DJ (1984) Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223:400–403

    Article  ADS  Google Scholar 

  • Dasanna AK, Lansche C, Lanzer M, Schwarz US (2017) Rolling adhesion of schizont stage malaria-infected red blood cells in shear flow. Biophys J 112:1908–1919

    Article  Google Scholar 

  • Dasgupta S, Auth T, Gompper G (2013) Wrapping of ellipsoidal nano-particles by fluid membranes. Soft Matter 9:5473–5482

    Article  ADS  Google Scholar 

  • Dasgupta S, Auth T, Gompper G (2014a) Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett 14:687–693

    Article  ADS  Google Scholar 

  • Dasgupta S, Auth T, Gov N, Satchwell TJ, Hanssen E, Zuccala ES, Riglar DT, Toye AM, Betz T, Baum J, Gompper G (2014b) Membrane-wrapping contributions to malaria parasite invasion of the human erythrocyte. Biophys J 107:43–54

    Article  Google Scholar 

  • Dasgupta S, Auth T, Gompper G (2017) Nano- and microparticles at biological and fluid interfaces. J Phys Condens Matter 29:373003

    Article  Google Scholar 

  • Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Sturm JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. Proc Nat Acad Sci USA 103:14779–14784

    Article  ADS  Google Scholar 

  • Dembo M, Torney DC, Saxman K, Hammer D (1988) The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond B 234:55–83

    Article  ADS  Google Scholar 

  • Deserno M (2004) Elastic deformation of a fluid membrane upon colloid binding. Phys Rev E 69:031903

    Article  ADS  Google Scholar 

  • Diez-Silva M, Dao M, Han J, Lim CT, Suresh S (2010) Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull 35:382–388

    Article  Google Scholar 

  • Discher DE, Mohandas N, Evans EA (1994) Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266:1032–1035

    Article  ADS  Google Scholar 

  • Engwerda CR, Beattie L, Amante FH (2005) The importance of the spleen in malaria. Trends Parasitol 21:75–80

    Article  Google Scholar 

  • Esposito A, Choimet JB, Skepper JN, Mauritz JMA, Lew VL, Kaminski CF, Tiffert T (2010) Quantitative imaging of human red blood cells infected with Plasmodium falciparum. Biophys J 99:953–960

    Article  Google Scholar 

  • Evans J, Gratzer W, Mohandas N, Parker K, Sleep J (2008) Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence. Biophys J 94:4134–4144

    Article  Google Scholar 

  • Fedosov DA, Caswell B, Karniadakis GE (2010) A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys J 98:2215–2225

    Article  Google Scholar 

  • Fedosov DA, Caswell B, Karniadakis GE (2011a) Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys J 100:2084–2093

    Article  Google Scholar 

  • Fedosov DA, Caswell B, Suresh S, Karniadakis GE (2011b) Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation. Proc Natl Acad Sci USA 108:35–39

    Article  ADS  Google Scholar 

  • Fedosov DA, Lei H, Caswell B, Suresh S, Karniadakis GE (2011c) Multiscale modeling of red blood cell mechanics and blood flow in malaria. PLoS Comput Biol 7:e1002270

    Article  MathSciNet  ADS  Google Scholar 

  • Fedosov DA, Pan W, Caswell B, Gompper G, Karniadakis GE (2011d) Predicting human blood viscosity in silico. Proc Natl Acad Sci USA 108:11772–11777

    Article  ADS  Google Scholar 

  • Fedosov DA, Noguchi H, Gompper G (2014) Multiscale modeling of blood flow: from single cells to blood rheology. Biomech Model Mechanobiol 13:239–258

    Article  Google Scholar 

  • Freund JB (2014) Numerical simulation of flowing blood cells. Annu Rev Fluid Mech 46:67–95

    Article  MathSciNet  ADS  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Gompper G, Ihle T, Kroll DM, Winkler RG (2009) Multi-particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Adv Polym Sci 221:1–87

    Google Scholar 

  • Gruenberg J, Allred DR, Sherman IW (1983) Scanning electron microscope-analysis of the protrusions (knobs) present on the surface of Plasmodium falciparum-infected erythrocytes. J Cell Biol 97:795–802

    Article  Google Scholar 

  • Hammer DA, Apte SM (1992) Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J 63:35–57

    Article  Google Scholar 

  • Hanley WD, Wirtz D, Konstantopoulos K (2004) Distinct kinetic and mechanical properties govern selectin-leukocyte interactions. J Cell Sci 117:2503–2511

    Article  Google Scholar 

  • Hansen JC, Skalak R, Chien S, Hoger A (1997) Influence of network topology on the elasticity of the red blood cell membrane skeleton. Biophys J 72:2369–2381

    Article  Google Scholar 

  • Hanssen E, Dekiwadia C, Riglar DT, Rug M, Lemgruber L, Cowman AF, Cyrklaff M, Kudryashev M, Frischknecht F, Baum J, Ralph SA (2013) Electron tomography of Plasmodium falciparum merozoites reveals core cellular events that underpin erythrocyte invasion. Cell Microbiol 15:1457–1472

    Article  Google Scholar 

  • Helms G, Dasanna AK, Schwarz US, Lanzer M (2016) Modeling cytoadhesion of Plasmodium falciparum-infected erythrocytes and leukocytes-common principles and distinctive features. FEBS Lett 590:1955–1971

    Article  Google Scholar 

  • Henon S, Lenormand G, Richert A, Gallet F (1999) A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J 76:1145–1151

    Article  Google Scholar 

  • Henry E, Holm SH, Zhang Z, Beech JP, Tegenfeldt JO, Fedosov DA, Gompper G (2016) Sorting cells by their dynamical properties. Sci Rep 6:34375

    Article  ADS  Google Scholar 

  • Holm SH, Beech JP, Barrett MP, Tegenfeldt JO (2011) Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11:1326–1332

    Article  Google Scholar 

  • Imai Y, Kondo H, Ishikawa T, Lim CT, Yamaguchi T (2010) Modeling of hemodynamics arising from malaria infection. J Biomech 43:1386–1393

    Article  Google Scholar 

  • Kabaso D, Shlomovitz R, Auth T, Lew VL, Gov NS (2010) Curling and local shape changes of red blood cell membranes driven by cytoskeletal reorganization. Biophys J 99:808–816

    Article  Google Scholar 

  • Korn C, Schwarz US (2006) Efficiency of initiating cell adhesion in hydrodynamic flow. Phys Rev Lett 97:138103

    Article  ADS  Google Scholar 

  • Korn CB, Schwarz US (2007) Mean first passage times for bond formation for a Brownian particle in linear shear flow above a wall. J Chem Phys 126:095103

    Article  ADS  Google Scholar 

  • Korn CB, Schwarz US (2008) Dynamic states of cells adhering in shear flow: from slipping to rolling. Phys Rev E 77:041904

    Article  ADS  Google Scholar 

  • Krüger T, Holmes D, Coveney PV (2014) Deformability-based red blood cell separation in deterministic lateral displacement devices – a simulation study. Biomicrofluidics 8:054114

    Article  Google Scholar 

  • Lanotte L, Mauer J, Mendez S, Fedosov DA, Fromental JM, Claveria V, Nicoud F, Gompper G, Abkarian M (2016) Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. Proc Natl Acad Sci USA 113:13289–13294

    Article  ADS  Google Scholar 

  • Lew VL, Tiffert T, Ginsburg H (2003) Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum-infected red blood cells. Blood 101:4189–4194

    Article  Google Scholar 

  • Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys J 88:3707–3719

    Article  Google Scholar 

  • Li X, Vlahovska PM, Karniadakis GE (2013) Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 9:28–37

    Article  ADS  Google Scholar 

  • Lim GHW, Wortis M, Mukhopadhyay R (2002) Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer-couple hypothesis from membrane mechanics. Proc Natl Acad Sci USA 99:16766–16769

    Article  ADS  Google Scholar 

  • Lim YB, Thingna J, Cao J, Lim CT (2017) Single molecule and multiple bond characterization of catch bond associated cytoadhesion in malaria. Sci Rep 7:4208

    Article  ADS  Google Scholar 

  • Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193

    Article  ADS  Google Scholar 

  • Mauritz JMA, Esposito A, Ginsburg H, Kaminski CF, Tiffert T, Lew VL (2009) The homeostasis of Plasmodium falciparum-infected red blood cells. PLoS Comput Biol 5:e1000339

    Article  ADS  Google Scholar 

  • Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415:673–679

    Article  Google Scholar 

  • Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759

    Article  MathSciNet  ADS  Google Scholar 

  • Nagao E, Kaneko O, Dvorak JA (2000) Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy. J Struct Biol 130:34–44

    Article  Google Scholar 

  • Nash GB, Cooke BM, Marsh K, Berendt A, Newbold C, Stuart J (1992) Rheological analysis of the adhesive interactions of red blood cells parasitized by Plasmodium falciparum. Blood 79:798–807

    Google Scholar 

  • Noguchi H, Gompper G (2005) Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc Natl Acad Sci USA 102:14159–14164

    Article  ADS  Google Scholar 

  • Park YK, Diez-Silva M, Popescu G, Lykotrafitis G, Choi W, Feld MS, Suresh S (2008) Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc Natl Acad Sci USA 105:13730–13735

    Article  ADS  Google Scholar 

  • Park YK, Best CA, Auth T, Gov NS, Safran SA, Popescu G, Suresh S, Feld MS (2010) Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci USA 107:1289–1294

    Article  ADS  Google Scholar 

  • Peng Z, Mashayekh A, Zhu Q (2014) Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton. J Fluid Mech 742:96–118

    Article  ADS  Google Scholar 

  • Pivkin IV, Caswell B, Karniadakis GE (2011) Dissipative particle dynamics. In: Lipkowitz KB (ed) Reviews in computational chemistry, vol 27. Wiley, Hoboken, pp 85–110

    Google Scholar 

  • Pivkin IV, Peng Z, Karniadakis GE, Buffet PA, Dao M, Suresh S (2016) Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proc Natl Acad Sci USA 113:7804–7809

    Article  ADS  Google Scholar 

  • Popescu G, Park YK, Dasari RR, Badizadegan K, Feld MS (2007) Coherence properties of red blood cell membrane motions. Phys Rev E 76:031902

    Article  ADS  Google Scholar 

  • Pries AR, Neuhaus D, Gaehtgens P (1992) Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol 263:H1770–H1778

    Google Scholar 

  • Puig-de-Morales-Marinkovic M, Turner KT, Butler JP, Fredberg JJ, Suresh S (2007) Viscoelasticity of the human red blood cell. Am J Physiol 293:C597–C605

    Article  Google Scholar 

  • Quadt KA, Barfod L, Andersen D, Bruun J, Gyan B, Hassenkam T, Ofori MF, Hviid L (2012) The density of knobs on Plasmodium falciparum-infected erythrocytes depends on developmental age and varies among isolates. PLoS ONE 7:e45658

    Article  ADS  Google Scholar 

  • Raventos-Suarez C, Kaul DK, Macaluso F, Nagel RL (1985) Membrane knobs are required for the microcirculatory obstruction induced by Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA 82:3829–3833

    Article  ADS  Google Scholar 

  • Rieger H, Yoshikawa HY, Quadt K, Nielsen MA, Sanchez CP, Salanti A, Tanaka M, Lanzer M (2015) Cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced. Blood 125:383–391

    Article  Google Scholar 

  • Seifert U, Berndl K, Lipowsky R (1991) Shape transformations of vesicles: phase diagram for spontaneous curvature and bilayer-coupling models. Phys Rev A 44:1182–1202

    Article  ADS  Google Scholar 

  • Seung HS, Nelson DR (1988) Defects in flexible membranes with crystalline order. Phys Rev A 38:1005–1018

    Article  ADS  Google Scholar 

  • Shelby JP, White J, Ganesan K, Rathod PK, Chiu DT (2003) A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA 100:14618–14622

    Article  ADS  Google Scholar 

  • Shi H, Liu Z, Li A, Yin J, Chong AGL, Tan KSW, Zhang Y, Lim CT (2013) Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes. PLoS ONE 8:e61170

    Article  ADS  Google Scholar 

  • Strey H, Peterson M, Sackmann E (1995) Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. Biophys J 69:478–488

    Article  Google Scholar 

  • Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1:15–30

    Article  Google Scholar 

  • Turlier H, Fedosov DA, Audoly BA, Auth T, Gov NS, Sykes C, Joanny JF, Gompper G, Betz T (2016) Equilibrium physics breakdown reveals the active nature of red blood cell membrane fluctuations. Nat Phys 12:513–519

    Article  Google Scholar 

  • Waldecker M, Dasanna AK, Lansche C, Linke M, Srismith S, Cyrklaff M, Sanchez CP, Schwarz US, Lanzer M (2017) Differential time-dependent volumetric and surface area changes and delayed induction of new permeation pathways in p. falciparum-infected hemoglobinopathic erythrocytes. Cell Microbiol 19:e12650

    Article  Google Scholar 

  • Waugh R, Evans EA (1979) Thermoelasticity of red blood cell membrane. Biophys J 26:115–131

    Article  ADS  Google Scholar 

  • Wells R, Schmid-Schönbein H (1969) Red cell deformation and fluidity of concentrated cell suspensions. J Appl Physiol 27:213–217

    Article  Google Scholar 

  • Wendt JF (ed) (2009) Computational fluid dynamics, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  • Wu T, Feng JJ (2013) Simulation of malaria-infected red blood cells in microfluidic channels: passage and blockage. Biomicrofluidics 7:044115

    Article  Google Scholar 

  • Yipp BG, Anand S, Schollaardt T, Patel KD, Looareesuwan S, Ho M (2000) Synergism of multiple adhesion molecules in mediating cytoadherence of Plasmodium falciparum-infected erythrocytes to microvascular endothelial cells under flow. Blood 96:2292–2298

    Google Scholar 

  • Zhang Y, Huang C, Kim S, Golkaram M, Dixon MWA, Tilley L, Li J, Zhang S, Suresh S (2015) Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite. Proc Natl Acad Sci USA 112:6068–6073

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.K.D. and U.S.S. acknowledge support by the DFG Collaborative Research Center 1129 on “Integrative Analysis of Pathogen Replication and Spread.” G.G. and D.A.F acknowledge the FP7-PEOPLE-2013-ITN LAPASO “Label-free particle sorting” for financial support. D.A.F acknowledges funding by the Alexander von Humboldt Foundation. G.G. and D.A.F also gratefully acknowledge a CPU time grant by the Jülich Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Fedosov .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dasanna, A.K., Schwarz, U.S., Gompper, G., Fedosov, D.A. (2018). Multiscale Modeling of Malaria-Infected Red Blood Cells. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_66-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_66-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics