Skip to main content

Challenges and Opportunities in Modeling Oxides for Energy and Information Devices

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

The growth of computational resources has enabled investigations of large-scale and highly correlated problems by using first principles computational techniques such as density functional theory (DFT). In context of oxide materials, these problems include oxide surface reconstructions (Diebold et al. 2010), diffusion and reaction barriers in heterogeneous systems (Chizallet and Raybaud 2014; Aksyonov et al. 2018), phase diagrams for transition metal oxides (Park et al. 2014; Leonov 2015), and point defects as well as extended defects (Youssef and Yildiz 2012; Sun et al. 2015). These developments have opened up new opportunities for predicting not only the bulk crystal properties of oxides, but also the effect of complex microstructures such as associated point defects (Hu et al. 2013; Liu et al. 2012; Zhang et al. 2014; T-Thienprasert et al. 2012), grain boundaries (Polfus et al. 2012; McKenna and Shluger 2009; Hojo et al. 2010), dislocations (Sun et al. 2015; Hojo et al. 2011; McKenna 2013), and surfaces (Lee and Morgan 2015; Freysoldt and Neugebauer 2018; Bajdich et al. 2015) under thermodynamic drivers. These developments can ultimately allow for ab initio prediction of realistic device performance. Yet, challenges remain on both the theoretical and algorithmic level to accurately predict oxide materials properties on a complex potential energy surface. Here we summarize several growing fields in addressing these challenges and present our perspectives on future directions that these methods will enable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe R et al (2013) Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator. J Am Chem Soc 135(45):16872–16884

    Article  Google Scholar 

  • Aksyonov DA et al (2018) Understanding migration barriers for monovalent ion insertion in transition metal oxide and phosphate based cathode materials: a DFT study. Comput Mater Sci 154:449–458

    Article  Google Scholar 

  • Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44(3):943–954

    Article  ADS  Google Scholar 

  • Bajdich M, Nørskov JK, Vojvodic A (2015) Surface energetics of alkaline-earth metal oxides: trends in stability and adsorption of small molecules. Phys Rev B 91(15):155401

    Article  ADS  Google Scholar 

  • Bechstedt F (2018) Correlation beyond the random phase approximation: a consistent many-body perturbation theory approach. Phys Rev B 97(24):241109

    Article  ADS  Google Scholar 

  • Becke AD (2014) Perspective: fifty years of density-functional theory in chemical physics. J Chem Phys 140(18):18A301

    Article  Google Scholar 

  • Cao A, Lu R, Veser G (2010) Stabilizing metal nanoparticles for heterogeneous catalysis. Phys Chem Chem Phys 12(41):13499–13510

    Article  Google Scholar 

  • Chevrier VL et al (2010) Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys Rev B 82(7):075122

    Article  ADS  Google Scholar 

  • Chibani W et al (2016) Self-consistent Green’s function embedding for advanced electronic structure methods based on a dynamical mean-field concept. Phys Rev B 93(16):165106

    Article  ADS  Google Scholar 

  • Chizallet C, Raybaud P (2014) Density functional theory simulations of complex catalytic materials in reactive environments: beyond the ideal surface at low coverage. Catal Sci Technol 4(9):2797–2813

    Article  Google Scholar 

  • Chizallet C et al (2008) Assignment of photoluminescence spectra of MgO powders: TD-DFT cluster calculations combined to experiments. Part I: structure effects on dehydroxylated surfaces. J Phys Chem C 112(42):16629–16637

    Article  Google Scholar 

  • Chua ALS et al (2010) A genetic algorithm for predicting the structures of interfaces in multicomponent systems. Nat Mater 9:418

    Article  ADS  Google Scholar 

  • Chu et al (2019) Battery electrodes, electrolytes, and their interfaces. In: Andreoni W, Yip S (eds) Handbook of materials modeling: applications: current and emerging materials. Springer International Publishing, Cham

    Google Scholar 

  • Demkov et al (2019) First-principles modeling of interface effects in oxides. In: Andreoni W, Yip S (eds) Handbook of materials modeling: applications: current and emerging materials. Springer International Publishing, Cham

    Google Scholar 

  • Diebold U, Li S-C, Schmid M (2010) Oxide surface science. Annu Rev Phys Chem 61(1):129–148

    Article  Google Scholar 

  • Duff AI et al (2015) Improved method of calculating ab initio high-temperature thermodynamic properties with application to ZrC. Phys Rev B 91(21):214311

    Article  ADS  Google Scholar 

  • Ergönenc Z et al (2018) Converged GW quasiparticle energies for transition metal oxide perovskites. Phys Rev Mater 2(2):024601

    Article  Google Scholar 

  • Fattori A et al (2010) Fast hole surface conduction observed for indoline sensitizer dyes immobilized at fluorine-doped tin oxide–TiO2 surfaces. J Phys Chem C 114(27):11822–11828

    Article  Google Scholar 

  • Freysoldt C, Neugebauer J (2018) First-principles calculations for charged defects at surfaces, interfaces, and two-dimensional materials in the presence of electric fields. Phys Rev B 97(20):205425

    Article  ADS  Google Scholar 

  • Freysoldt C et al (2014) First-principles calculations for point defects in solids. Rev Mod Phys 86(1):253–305

    Article  ADS  Google Scholar 

  • Georges A et al (1996) Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev Mod Phys 68(1):13–125

    Article  ADS  MathSciNet  Google Scholar 

  • Grabowski B et al (2009) Ab initio up to the melting point: anharmonicity and vacancies in aluminum. Phys Rev B 79(13):134106

    Article  ADS  Google Scholar 

  • Han D et al (2016) Phonon-enabled carrier transport of localized states at non-polar semiconductor surfaces: a first-principles-based prediction. J Phys Chem Lett 7(18):3548–3553

    Article  Google Scholar 

  • Harmer MP (2011) The phase behavior of interfaces. Science 332(6026):182–183

    Article  ADS  Google Scholar 

  • Hautier G et al (2012) Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. Phys Rev B 85(15):155208

    Article  ADS  Google Scholar 

  • He J, Franchini C (2017) Assessing the performance of self-consistent hybrid functional for band gap calculation in oxide semiconductors. J Phys Condens Matter 29(45):454004

    ADS  Google Scholar 

  • Hedin L (1965) New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys Rev 139(3A):A796–A823

    Article  ADS  Google Scholar 

  • Heinemann M, Eifert B, Heiliger C (2013) Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3. Phys Rev B 87(11):115111

    Google Scholar 

  • Hess et al (2019) Solid oxide fuel cell materials and interfaces. In: Andreoni W, Yip S (eds) Handbook of materials modeling: applications: current and emerging materials. Springer International Publishing, Cham

    Google Scholar 

  • Hojo H et al (2010) Atomic structure of a CeO2 grain boundary: the role of oxygen vacancies. Nano Lett 10(11):4668–4672

    Article  ADS  Google Scholar 

  • Hojo H et al (2011) Atomic structure and strain field of threading dislocations in CeO2 thin films on yttria-stabilized ZrO2. Appl Phys Lett 98(15):153104

    Article  ADS  Google Scholar 

  • Hu W et al (2013) Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat Mater 12:821

    Article  ADS  Google Scholar 

  • Kirklin S et al (2015) The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. Npj Comput Mater 1:15010

    Article  ADS  Google Scholar 

  • Kleijn SEF et al (2014) Electrochemistry of nanoparticles. Angew Chem Int Ed 53(14):3558–3586

    Article  Google Scholar 

  • Klimeš J, Michaelides A (2012) Perspective: advances and challenges in treating Van Der Waals dispersion forces in density functional theory. J Chem Phys 137(12):120901

    Article  ADS  Google Scholar 

  • Klimeš J, Kaltak M, Kresse G (2014) Predictive GW calculations using plane waves and pseudopotentials. Phys Rev B 90(7):075125

    Google Scholar 

  • Kozinsky et al (2019) Transport in frustrated and disordered solid electrolytes. In: Andreoni W, Yip S (eds) Handbook of materials modeling: applications: current and emerging materials. Springer International Publishing, Cham

    Google Scholar 

  • Kulik HJ (2015) Perspective: treating electron over-delocalization with the DFT+U method. J Chem Phys 142(24):240901

    Article  Google Scholar 

  • Kuttipillai PS et al (2016) Phosphorescent nanocluster light-emitting diodes. Adv Mater 28(2):320–326

    Article  Google Scholar 

  • Labat F et al (2012) First-principles modeling of dye-sensitized solar cells: challenges and perspectives. Acc Chem Res 45(8):1268–1277

    Article  Google Scholar 

  • Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113(17):2019–2039

    Article  Google Scholar 

  • Leang SS, Zahariev F, Gordon MS (2012) Benchmarking the performance of time-dependent density functional methods. J Chem Phys 136(10):104101

    Article  ADS  Google Scholar 

  • Lechermann et al (2019) Oxide heterostructures from a realistic many-body perspective. In: Andreoni W, Yip S (eds) Handbook of materials modeling: applications: current and emerging materials. Springer International Publishing, Cham

    Google Scholar 

  • Lee Y-L, Morgan D (2015) Ab initio defect energetics of perovskite (001) surfaces for solid oxide fuel cells: a comparative study of LaMnO3 versus SrTiO3 and LaAlO3. Phys Rev B 91(19):195430

    Google Scholar 

  • Lee JH, Rabe KM (2010) Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys Rev Lett 104(20):207204

    Google Scholar 

  • Leonov I (2015) Metal-insulator transition and local-moment collapse in FeO under pressure. Phys Rev B 92(8):085142

    Google Scholar 

  • Li W et al (2013) Density functional theory and beyond for band-gap screening: performance for transition-metal oxides and dichalcogenides. J Chem Theory Comput 9(7):2950–2958

    Article  Google Scholar 

  • Libisch F, Huang C, Carter EA (2014) Embedded correlated wavefunction schemes: theory and applications. Acc Chem Res 47(9):2768–2775

    Article  Google Scholar 

  • Lin H, Truhlar DG (2006) QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Accounts 117(2):185

    Article  Google Scholar 

  • Liu L et al (2012) p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex. Phys Rev Lett 108(21):215501

    Google Scholar 

  • Lu et al (2019) Design of new multiferroic oxides. In: Andreoni W, Yip S (eds) Handbook of materials modeling: applications: current and emerging materials. Springer International Publishing, Cham

    Google Scholar 

  • Lousada CM et al (2013) Reactivity of metal oxide clusters with hydrogen peroxide and water – a DFT study evaluating the performance of different exchange–correlation functionals. Phys Chem Chem Phys 15(15):5539–5552

    Article  Google Scholar 

  • Makhal A et al (2010) Role of resonance energy transfer in light harvesting of zinc oxide-based dye-sensitized solar cells. J Phys Chem C 114(23):10390–10395

    Article  Google Scholar 

  • Mankowsky R et al (2014) Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516:71

    Article  ADS  Google Scholar 

  • Mannhart J, Schlom DG (2010) Oxide interfaces – an opportunity for electronics. Science 327(5973):1607–1611

    Article  ADS  Google Scholar 

  • Mattsson AE (2002) In pursuit of the “divine” functional. Science 298(5594):759–760

    Article  Google Scholar 

  • McKenna KP (2013) Electronic and chemical properties of a surface-terminated screw dislocation in MgO. J Am Chem Soc 135(50):18859–18865

    Article  Google Scholar 

  • McKenna KP, Shluger AL (2009) First-principles calculations of defects near a grain boundary in MgO. Phys Rev B 79(22):224116

    Google Scholar 

  • Meyer J, Reuter K (2014) Modeling heat dissipation at the nanoscale: an embedding approach for chemical reaction dynamics on metal surfaces. Angew Chem Int Ed 53(18):4721–4724

    Article  Google Scholar 

  • Nørskov JK et al (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci 108(3):937–943. https://doi.org/10.1073/pnas.1006652108

    Article  ADS  Google Scholar 

  • Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74(2):601–659

    Article  ADS  Google Scholar 

  • Park H, Millis AJ, Marianetti CA (2014) Total energy calculations using DFT+DMFT: computing the pressure phase diagram of the rare earth nickelates. Phys Rev B 89(24):245133

    Google Scholar 

  • Pastore M, Fantacci S, De Angelis F (2013) Modeling excited states and alignment of energy levels in dye-sensitized solar cells: successes, failures, and challenges. J Phys Chem C 117(8):3685–3700

    Article  Google Scholar 

  • Perdew JP, Schmidt K (2001) Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc 577(1):1–20

    Google Scholar 

  • Perdew JP et al (2005) Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J Chem Phys 123(6):062201

    Article  ADS  Google Scholar 

  • Petersilka M, Gossmann UJ, Gross EKU (1996) Excitation energies from time-dependent density-functional theory. Phys Rev Lett 76(8):1212–1215

    Article  ADS  Google Scholar 

  • Plasser F et al (2012) Electronically excited states and photodynamics: a continuing challenge. Theor Chem Accounts 131(1):1073

    Article  Google Scholar 

  • Polfus JM et al (2012) Defect chemistry of a BaZrO3 Sigma 3 (111) grain boundary by first principles calculations and space-charge theory. Phys Chem Chem Phys 14(35):12339–12346

    Google Scholar 

  • Reining L et al (2002) Excitonic effects in solids described by time-dependent density-functional theory. Phys Rev Lett 88(6):066404

    Google Scholar 

  • Reticcioli M et al (2019) Small polarons in transition metal oxides. In: Andreoni W, Yip S (eds) Handbook of materials modeling: applications: current and emerging materials. Springer International Publishing, Cham

    Google Scholar 

  • Pentcheva R, Pickett WE (2010) Electronic phenomena at complex oxide interfaces: insights from first principles. J Phys Condens Matter 22(4):043001

    ADS  Google Scholar 

  • Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997–1000

    Article  ADS  Google Scholar 

  • Sadasivam S et al (2017) Thermal transport across metal silicide–silicon interfaces: first-principles calculations and Green’s function transport simulations. Phys Rev B 95(8):085310

    Article  ADS  Google Scholar 

  • Salpeter EE, Bethe HA (1951) A relativistic equation for bound-state problems. Phys Rev 84(6):1232–1242

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Serrano J et al (2010) Phonon dispersion relations of zinc oxide: inelastic neutron scattering and ab initio calculations. Phys Rev B 81(17):174304

    Google Scholar 

  • Shluger et al (2019) Defects in oxides in electronic devices. In: Andreoni W, Yip S (eds) Handbook of materials modeling: applications: current and emerging materials. Springer International Publishing, Cham

    Google Scholar 

  • Stecher T, Reuter K, Oberhofer H (2016) First-principles free-energy barriers for photoelectrochemical surface reactions: proton abstraction at TiO2 (110). Phys Rev Lett 117(27):276001

    Google Scholar 

  • Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109(19):8218–8224

    Article  ADS  Google Scholar 

  • Sun Q, Chan GK-L (2016) Quantum embedding theories. Acc Chem Res 49(12):2705–2712

    Article  Google Scholar 

  • Sun L, Marrocchelli D, Yildiz B (2015) Edge dislocation slows down oxide ion diffusion in doped CeO2 by segregation of charged defects. Nat Commun 6:6294

    Google Scholar 

  • Sun J et al (2016) Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat Chem 8:831

    Article  ADS  Google Scholar 

  • Suzuki S, Tsuneda T, Hirao K (2012) A theoretical investigation on photocatalytic oxidation on the TiO2 surface. J Chem Phys 136(2):024706

    Article  ADS  Google Scholar 

  • Tadano T, Tsuneyuki S (2015) Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants. Phys Rev B 92(5):054301

    Google Scholar 

  • Tao J et al (2003) Climbing the density functional ladder: nonempirical meta – generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91(14):146401

    Article  ADS  Google Scholar 

  • Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scr Mater 108:1–5

    Article  Google Scholar 

  • Tran F, Stelzl J, Blaha P (2016) Rungs 1 to 4 of DFT Jacob’s ladder: extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. J Chem Phys 144(20):204120

    Article  ADS  Google Scholar 

  • T-Thienprasert J et al (2012) Identification of hydrogen defects in SrTiO3 by first-principles local vibration mode calculations. Phys Rev B 85(12):125205

    Google Scholar 

  • Valentin D, Cristiana SB, Cococcioni M (2014) First principles approaches to spectroscopic properties of complex materials, vol 347. Springer, Berlin/Heidelberg

    Google Scholar 

  • Varley JB et al (2017) High-throughput design of non-oxide p-type transparent conducting materials: data mining, search strategy, and identification of boron phosphide. Chem Mater 29(6):2568–2573

    Article  Google Scholar 

  • Wang et al (2019) Strain control of domain structures in ferroelectric thin films – applications of phase-field method. In: Andreoni W, Yip S (eds) Handbook of materials modeling: applications: current and emerging materials. Springer International Publishing, Cham

    Google Scholar 

  • Wang X, Zebarjadi M, Esfarjani K (2016) First principles calculations of solid-state thermionic transport in layered Van Der Waals heterostructures. Nanoscale 8(31):14695–14704

    Article  ADS  Google Scholar 

  • Youssef et al (2019) Defect equilibria and kinetics in crystalline insulating oxides – bulk and hetero-interfaces. In: Andreoni W, Yip S (eds) Handbook of materials modeling: applications: current and emerging materials. Springer International Publishing, Cham

    Google Scholar 

  • Youssef M, Yildiz B (2012) Intrinsic point-defect equilibria in tetragonal ZrO2: density functional theory analysis with finite-temperature effects. Phys Rev B 86(14):144109

    Google Scholar 

  • Youssef M, Yang M, Yildiz B (2016) Doping in the valley of hydrogen solubility: a route to designing hydrogen-resistant zirconium alloys. Phys Rev Appl 5(1):014008

    Google Scholar 

  • Zhang G, Lu Y, Wang X (2014) Hydrogen interactions with intrinsic point defects in hydrogen permeation barrier of [small alpha]-Al2O3: a first-principles study. Phys Chem Chem Phys 16(33):17523–17530

    Google Scholar 

  • Zhao Y et al (2015) Understanding the effect of monomeric iridium(III/IV) aquo complexes on the photoelectrochemistry of IrOx·nH2O-catalyzed water-splitting systems. J Am Chem Soc 137(27):8749–8757

    Article  Google Scholar 

  • Zheng Y et al (2015) Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed 54(1):52–65

    Article  Google Scholar 

  • Zhou F et al (2014) Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations. Phys Rev Lett 113(18):185501

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilge Yildiz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yildiz, B., Franchini, C., Yang, J. (2019). Challenges and Opportunities in Modeling Oxides for Energy and Information Devices. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_50-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_50-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics