Skip to main content

Excited-State Properties of Thin Silicon Nanowires

Handbook of Materials Modeling

Abstract

Calculating many-electron interactions is crucial in determining excited-state properties of low-dimensional structures and is often beyond the capability of density functional theory, which is a ground-state theory. First-principles many-body perturbation theory can better describe many-electron effects and has been successfully employed to study excited-state properties of a wide range of solids. Such properties include quasiparticle energies, excitonic effects, and optical absorption spectra. In one-dimensional ultrathin silicon nanowires, which have been regarded as building blocks of nanoscale devices, many-electron interactions are substantially enhanced because of reduced dimensionality and weak electronic screening. If we employ many-body perturbation theory based on GW calculations for a silicon nanowire with a diameter of 1.2 nm, the quasiparticle band gap is 3.2 eV. This value is twice of that calculated from density functional theory. Excitonic effects and optical absorption spectra, which cannot be obtained solely from GW calculations, are obtained by solving the Bethe-Salpeter equation. The calculated electron-hole binding energy is 1.2 eV for the same sized silicon nanowire. This binding energy is about two orders of magnitude larger than those found in bulk semiconductors. Our results agree well with recent measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albrecht S, Reining L, Del Sole R, Onida G (1998) Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys Rev Lett 80:4510

    Article  ADS  Google Scholar 

  • An JM, Franceschetti A, Zunger A (2007) The excitonic exchange splitting and radiative lifetime in PbSe quantum dots. Nano Lett 7:2129–2135

    Article  ADS  Google Scholar 

  • Aspnes DE, Theeten JB (1980) Spectroscopic analysis of the interface between Si and its thermally grown oxide. J Electrochem Soc 127:1359

    Article  Google Scholar 

  • Beckman SP, Han J, Chelikowsky JR (2007) Quantum confinement effects in Ge [110] nanowires. Phys Rev B 74:165314

    Article  ADS  Google Scholar 

  • Blasé X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335

    Article  ADS  Google Scholar 

  • Blasé X, Rubio A, Louie SG, Cohen M (1995) Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Phys Rev B 51:6868

    Article  ADS  Google Scholar 

  • Bruneval F, Botti S, Reining L (2005) Comment on “quantum confinement and electronic properties of silicon nanowires”. Phys Rev Lett 94:219701

    Article  ADS  Google Scholar 

  • Bruno M, Palummo M, Marini A, Sole RD, Ossicini S (2007) From Si nanowires to porous silicon: the role of excitonic effects. Phys Rev Lett 98:036807

    Article  ADS  Google Scholar 

  • Capaz RB, Spataru CD, Ismail-Beigi S, Louie SG (2006) Diameter and chirality dependence of exciton properties in carbon nanotubes. Phys Rev B 74:121401

    Article  ADS  Google Scholar 

  • Chernikov A, Berkelbach TC, Hill HM, Rigosi A, Li Y, Aslan OB, Reichman DR, Hybertsen MS, Heinz TF (2014) Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys Rev Lett 113:076802

    Article  ADS  Google Scholar 

  • Cohen ML, Louie SG (2016) Fundamentals of condensed matter physics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853

    Article  ADS  Google Scholar 

  • Dalpian GM, Chelikowsky JR (2009) Self-purification in semiconductor nanocrystals. Phys Rev Lett 96:226802

    Article  ADS  Google Scholar 

  • Delerue C, Lannoo M, Allan G (2000) Excitonic and quasiparticle gaps in Si nanocrystals. Phys Rev Lett 84:2457

    Article  ADS  Google Scholar 

  • Deslippe J, Samsonidze G, Strubbe DA, Jain M, Cohen ML, Louie SG, Berkeley GW (2012) A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput Phys Commun 183:1269

    Article  ADS  Google Scholar 

  • Deslippe J, Samsonidze G, Jain M, Cohen ML, Louie SG (2013) Coulomb-hole summations and energies for GW calculations with limited number of empty orbitals: a modified static remainder approach. Phys Rev B 87:165124

    Article  ADS  Google Scholar 

  • Dresselhaus M (2004) Applied physics: nanotube antennas. Nature 432:959–960

    Article  ADS  Google Scholar 

  • Fetter A, Walecka JD (1971) Quantum theory of many particle systems. McGraw-Hill, San Francisco, p 538

    Google Scholar 

  • Gao S, Liang Y, Spataru CD, Yang L (2016) Dynamical excitonic effects in doped two-dimensional semiconductors. Nano Lett 16:5568–5573

    Article  ADS  Google Scholar 

  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  • Gregg BA (2003) Excitonic Solar cells. J Phys Chem B 107:4688–4698

    Article  Google Scholar 

  • Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–620

    Article  ADS  Google Scholar 

  • Hedin L (1965) New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys Rev 139:A796–A823

    Article  ADS  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  ADS  MathSciNet  Google Scholar 

  • Homles JD, Johnston KP, Doty RC, Korgel BA (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287:1471–1473

    Article  ADS  Google Scholar 

  • Huang L, Ogut S (2018) Modeling excited states of confined systems. In: Handbook of materials modeling. Springer, Dordrecht, Berlin, Heidelberg, New York

    Google Scholar 

  • Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34:5390–5413

    Article  ADS  Google Scholar 

  • Ismail-Beig S (2006) Truncation of periodic image interactions for confined systems. Phys Rev B 73:233103

    Article  ADS  Google Scholar 

  • Katz D, Wizansky T, Millo O, Rothenberg E, Mokari T, Banin U (2002) Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. Phys Rev Lett 89:086801

    Article  ADS  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  ADS  MathSciNet  Google Scholar 

  • Lautenschlager P, Garriga M, Via L, Cardona M (1987) Temperature dependence of the dielectric function and interband critical points in silicon. Phys Rev B 36:4821

    Article  ADS  Google Scholar 

  • Liang Y, Yang L (2015) Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors. Phys Rev Lett 114:063001

    Article  ADS  Google Scholar 

  • Louie SG, Rubio A (2005) Quasiparticle and optical properties of solids and nanostructures: the GW-BSE approach. In: Handbook of materials modeling. Springer, Dordrecht, Berlin, Heidelberg, New York, pp 215–240

    Chapter  Google Scholar 

  • Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST (2003) Small-diameter silicon nanowire surfaces. Science 299:1874–1877

    Article  ADS  Google Scholar 

  • Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211

    Article  ADS  Google Scholar 

  • Nduwimana A, Wang XQ (2014) Tunable electronic properties of silicon nanowires under strain and electric bias. AIP Adv 4:077122

    Article  ADS  Google Scholar 

  • Neaton JB, Hybertsen MS, Louie SG (2006) Renormalization of molecular electronic levels at metal-molecule interfaces. Phys Rev Lett 97:216405

    Article  ADS  Google Scholar 

  • Nolan M, O’Callaghan S, Fagas G, Greer JC (2007) Silicon nanowire band gap modification. Nano Lett 7:34–38

    Article  ADS  Google Scholar 

  • Oğüt S, Chelikowsky JR, Louie SG (1997) Quantum confinement and optical gaps in Si nanocrystals. Phys Rev Lett 79:1770

    Article  ADS  Google Scholar 

  • Onida G, Reining L, Godby RW, Del Sole R, Andreoni W (1995) Ab initio calculations of the quasiparticle and absorption spectra of clusters: the sodium tetramer. Phys Rev Lett 75:818

    Article  ADS  Google Scholar 

  • Palummo M, Amato M, Ossicini A (2010a) Ab initio optoelectronic properties of SiGe nanowires: role of many-body effects. Phys Rev B 82:073305

    Article  ADS  Google Scholar 

  • Palummo M, Iori F, Del Sole R, Ossicini S (2010b) Giant excitonic exchange splitting in Si nanowires: first-principles calculations. Phys Rev B 81:121303(R)

    Article  ADS  Google Scholar 

  • Park C-H, Spataru CD, Louie SG (2006) Excitons and many-electron effects in the optical response of single-walled boron nitride nanotubes. Phys Rev Lett 96:126105

    Article  ADS  Google Scholar 

  • Peelaers H, Partoens B, Giantomassi M, Rangel T, Goossens E, Rignanese GM, Gonze X, Peeters FM (2011) Convergence of quasiparticle band structures of Si and Ge nanowires in the GW approximation and the validity of scissor shifts. Phys Rev B 83:045306

    Article  ADS  Google Scholar 

  • Philipp HP (1972) Influence of oxide layers on the determination of the optical properties of silicon. J Appl Phys 43:2836

    ADS  Google Scholar 

  • Ping Y, Rocca D, Lu D, Galli G (2012) Ab initio calculations of absorption spectra of semiconducting nanowires within many-body perturbation theory. Phys Rev B 85:035316

    Article  ADS  Google Scholar 

  • Qiu DY, Felipe H, Louie SG (2013) Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys Rev Lett 111:216805

    Article  ADS  Google Scholar 

  • Rohlfing M, Louie SG (1998) Excitonic effects and the optical absorption spectrum of hydrogenated Si clusters. Phys Rev Lett 80:3320

    Article  ADS  Google Scholar 

  • Rohlfing M, Louie SG (1999) Excitons and optical spectrum of the Si (111)−(2×1) surface. Phys Rev Lett 83:856

    Article  ADS  Google Scholar 

  • Rohlfing M, Louie SG (2000) Electron-hole excitations and optical spectra from first principles. Phys Rev B 62:4927

    Article  ADS  Google Scholar 

  • Rozzi CA, Varsano D, Marini A, Gross EKU, Rubio A (2006) Exact Coulomb cutoff technique for supercell calculations. Phys Rev B 73:205119

    Article  ADS  Google Scholar 

  • Rubio A, Corkil JL, Cohen M, Shirley EL, Louie SG (1993) Quasiparticle band structure of AlN and GaN. Phys Rev B 48:11810

    Article  ADS  Google Scholar 

  • Shih B-C, Xue Y, Zhang P, Cohen ML, Louie SG (2010) Quasiparticle band gap of ZnO: high accuracy from the conventional G0W0 approach. Phys Rev Lett 105:146401

    Article  ADS  Google Scholar 

  • Shirley EL, Louie SG (1993) Electron excitations in solid C 60: energy gap, band dispersions, and effects of orientational disorder. Phys Rev Lett 71:133

    Article  ADS  Google Scholar 

  • Sirbuly DJ, Law M, Yan H, Yang P (2005) Semiconductor nanowires for subwavelength photonics integration. J Phys Chem B 109:15190–15213

    Article  Google Scholar 

  • Son Y-W, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444:347–349

    Article  ADS  Google Scholar 

  • Spataru CD, Léonard F (2010) Tunable band gaps and excitons in doped semiconducting carbon nanotubes made possible by acoustic plasmons. Phys Rev Lett 104:177402

    Article  ADS  Google Scholar 

  • Spataru CD, Ismail-Beigi S, Benedict LX, Louie SG (2004a) Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys Rev Lett 92:077402

    Article  ADS  Google Scholar 

  • Spataru CD, Ismail-Beigi S, Benedict LX, Louie SG (2004b) Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes. Appl Phys A Mater Sci Process 78:1129

    Article  ADS  Google Scholar 

  • Srivastava A, Htoon H, Klimov VI, Kono J (2008) Direct observation of dark excitons in individual carbon nanotubes: inhomogeneity in the exchange splitting. Phys Rev Lett 101:087402

    Article  ADS  Google Scholar 

  • Tran V, Soklaski R, Liang Y, Yang L (2014) Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B 89:235319

    Article  ADS  Google Scholar 

  • Ugeda MM, Bradley AJ, Shi SF, da Jornada FH, Zhang Y, Qiu DY, Ruan W, Mo SK, Hussain Z, Shen ZX, Wang F, Louie SG, Crommie MF (2014) Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 13:1091–1095

    Article  ADS  Google Scholar 

  • Vasiliev I, Ogut S, Chelikowsky JR (2002) First-principles density-functional calculations for optical spectra of clusters and nanocrystals. Phys Rev B 65: 115416

    Google Scholar 

  • Wu Z, Neaton JB, Grossman JC (2008) Quantum confinement and electronic properties of tapered silicon nanowires. Phys Rev Lett 100:246804

    Article  ADS  Google Scholar 

  • Wu Z, Neaton JB, Grossman JC (2009) Charge separation via strain in silicon nanowires. Nano Lett 9:2418–2422

    Article  ADS  Google Scholar 

  • Yan JA, Yang L, Chou MY (2007) Size and orientation dependence in the electronic properties of silicon nanowires. Phys Rev B 76:115319

    Article  ADS  Google Scholar 

  • Yang L, Chou MY (2011) Lattice vibrational modes and their frequency shifts in semiconductor nanowires. Nano Lett 11:2618–2621

    Article  ADS  Google Scholar 

  • Yang L, Spataru CD, Louie SG, Chou MY (2007a) Enhanced electron-hole interaction and optical absorption in a silicon nanowire. Phys Rev B 75:201304(R)

    Article  ADS  Google Scholar 

  • Yang L, Cohen ML, Louie SG (2007b) Excitonic effects in the optical spectra of graphene nanoribbons. Nano Lett 7:3112–3115

    Article  ADS  Google Scholar 

  • Yang L, Park C-H, Son Y-W, Cohen ML, Louie SG (2007c) Quasiparticle energies and band gaps in graphene nanoribbons. Phys Rev Lett 99:186801

    Article  ADS  Google Scholar 

  • Yang L, Deslippe J, Park C-H, Cohen ML, Louie SG (2009) Excitonic effects on the optical response of graphene and bilayer graphene. Phys Rev Lett 103:186802

    Article  ADS  Google Scholar 

  • Yu H, Li J, Loomis RA, Wang LW, Buhro WE (2003) Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Nat Mater 2:517–520

    Article  ADS  Google Scholar 

  • Zhang RQ, Liu XM, Wen Z, Jiang Q (2011a) Prediction of silicon nanowires as photocatalysts for water splitting: band structures calculated using density functional theory. J Phys Chem C 115:3425–3428

    Article  Google Scholar 

  • Zhang L, Luo JW, Franceschetti A, Zunger A (2011b) Excitons and excitonic fine structures in Si nanowires: prediction of an electronic state crossover with diameter changes. Phys Rev B 84:075404

    Article  ADS  Google Scholar 

  • Zhao X, Wei CM, Yang L, Chou MY (2004) Quantum confinement and electronic properties of silicon nanowires. Phys Rev Lett 92:236805

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation Grants No. DMR-02-05328, No. DMR-04-39768, No. SBE-01-23532, and No. DMR-1455346, the Department of Energy Grant No. DE-FG02-97ER45632 and No. DE-AC02-05CH11231, and the Air Force Office of Scientific Research (AFOSR) Grant No. FA9550-17-1-0304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yang, L. (2018). Excited-State Properties of Thin Silicon Nanowires. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Excited-State Properties of Thin Silicon Nanowires
    Published:
    26 June 2019

    DOI: https://doi.org/10.1007/978-3-319-50257-1_37-2

  2. Original

    Excited-State Properties of Thin Silicon Nanowires
    Published:
    11 September 2018

    DOI: https://doi.org/10.1007/978-3-319-50257-1_37-1