Skip to main content

Functionalizing Two-Dimensional Materials for Energy Applications

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling
  • 399 Accesses

Abstract

In this chapter, the authors have systemically reviewed the electronic properties of chemically functionalized two-dimensional (2D) materials for various applications. Hydrogenation and oxidization of graphene and silicene have been predicted to be efficient approaches to open sizable band gaps in these 2D materials, and the values of the band gaps can be tuned by varying the concentration of chemical absorbers. In this way these materials become very promising for both low-gap and large-gap energy-related applications. Modulation doping of epitaxial 2D materials via substrates provides an alternative way to enhance the dopant and carrier densities in 2D materials. Meanwhile, the carrier mobility of the host 2D materials can be largely maintained after doping. The electronic and magnetic properties of transition-metal (TM)-doped graphene and single-layer boron nitride (BN) can be effectively controlled by the choice of the TM atoms and/or the intrinsic surface defects, which make TM-doped 2D materials holding great potential for spintronic applications. Finally, the authors show that alloying could be an important way to extend the employment of 2D materials in specific energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bergman L, McHale JL (eds) (2011) Handbook of luminescent semiconductor materials. Taylor Francis Group, Boca Raton

    Google Scholar 

  • Botti S, Flores-Livas JA, Amsler M, Goedecker S, Marques MAL (2012) Low-energy silicon allotropes with strong absorption in the visible for photovoltaic applications. Phys Rev B 86:121204

    Article  ADS  Google Scholar 

  • Boukhvalov DW, Katsnelson MI (2008a) Chemical functionalization of graphene with Defects. Nano Lett 8:4373

    Article  ADS  Google Scholar 

  • Boukhvalov DW, Katsnelson MI (2008b) Modeling of graphite oxide. J Am Chem Soc 130:10697

    Article  Google Scholar 

  • Boukhvalov DW, Katsnelson MI, Lichtenstein AI (2008) Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys Rev B 77:035427

    Article  ADS  Google Scholar 

  • Brodie B (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249

    Article  ADS  Google Scholar 

  • Bundy FP (1989) Pressure-temperature phase diagram of elemental carbon. Physica (Amsterdam) 156:169

    Article  ADS  Google Scholar 

  • Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804

    Article  ADS  Google Scholar 

  • Cai WW, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang DX, Velamakanni A, An SJ, Stoller M, An JH, Chen DM, Ruoff RS (2008) Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321:1815

    Article  ADS  Google Scholar 

  • Chen L, Liu CC, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K (2012) Evidence for dirac fermions in a honeycomb lattice based on silicon. Phys Rev Lett 109:056804

    Article  ADS  Google Scholar 

  • Cretu O, Krasheninnikov AV, Rodriguez-Manzo JA, Sun L, Nieminen RM, Banhart F (2010) Migration and localization of metal atoms on strained graphene. Phys Rev Lett 105:196102

    Article  ADS  Google Scholar 

  • Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270

    Article  Google Scholar 

  • Fagan SB, Baierle RJ, Mota R, da Silva AJR, Fazzio A (2000) Ab initio calculations for a hypothetical material: Silicon nanotubes. Phys Rev B 61:9994

    Article  ADS  Google Scholar 

  • Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K (2012) Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett 12:3507

    Article  ADS  Google Scholar 

  • Ferreira LG, Wei SH, Zunger A (1989) First-principles calculation of alloy phase diagrams: The renormalized-interaction approach. Phys Rev B 40:3197

    Article  ADS  Google Scholar 

  • Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y (2012) Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett 108:245501

    Article  ADS  Google Scholar 

  • Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403

    Article  Google Scholar 

  • Garza AJ, Scuseria GE (2016) Predicting band gaps with hybrid density functionals. J Phys Chem Lett 7:4165

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Article  ADS  Google Scholar 

  • Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394

    Article  ADS  Google Scholar 

  • Guzman-Verri GG, Lew Yan Voon LC (2007) Electronic structure of silicon-based nanostructures. Phys Rev B 76:075131

    Article  ADS  Google Scholar 

  • Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207

    Article  ADS  Google Scholar 

  • Ho I, Stringfellow GB (1996) Solid phase immiscibility in GaInN. Appl Phys Lett 69:2701

    Article  ADS  Google Scholar 

  • Hod O, Barone V, Scuseria GE (2008) Half-metallic graphene nanodots: A comprehensive first-principles theoretical study. Phys Rev B 77:035411

    Article  ADS  Google Scholar 

  • Huang B, Xiang HJ, Wei S-H (2011a) Controlling doping in graphene through a SiC substrate: A first-principles study. Phys Rev B 83:161405

    Article  ADS  Google Scholar 

  • Huang B, Yu J, Wei S-H (2011b) Strain control of magnetism in graphene decorated by transition-metal atoms. Phys Rev B 84:075415

    Article  ADS  Google Scholar 

  • Huang B, Cao XK, Jiang HX, Lin JY, Wei S-H (2012a) Origin of the significantly enhanced optical transitions in layered boron nitride. Phys Rev B 86:155202

    Article  ADS  Google Scholar 

  • Huang B, Xiang HJ, Yu J, Wei S-H (2012b) Effective control of the charge and magnetic states of transition-metal atoms on single-layer boron nitride. Phys Rev Lett 108:206802

    Article  ADS  Google Scholar 

  • Huang B, Xiang HJ, Xu Q, Wei S-H (2013a) Overcoming the phase inhomogeneity in chemically functionalized graphene: The case of graphene oxides. Phys Rev Lett 110:085501

    Article  ADS  Google Scholar 

  • Huang B, Xiang HJ, Wei S-H (2013b) Chemical functionalization of silicene: Spontaneous structural transition and exotic electronic properties. Phys Rev Lett 111:145502

    Article  ADS  Google Scholar 

  • Huang B, Deng HX, Lee H, Yoon M, Sumpter BG, Liu F, Smith SC, Wei S-H (2014) Exceptional optoelectronic properties of hydrogenated bilayer silicene. Phys Rev X 4:021029

    Google Scholar 

  • Huang B, Zhuang HL, Yoon M, Sumpter BG, Wei S-H (2015a) Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties. Phys Rev B 91:121401

    Article  ADS  Google Scholar 

  • Huang B, Yoon M, Sumpter BG, Wei S-H, Liu F (2015b) Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides. Phys Rev Lett 115:126806

    Article  ADS  Google Scholar 

  • Krasheninnikov AV, Lehtinen PO, Foster AS, Pyykko P, Nieminen RM (2009) Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys Rev Lett 102:126807

    Article  ADS  Google Scholar 

  • Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15

    Article  Google Scholar 

  • Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36

    Article  ADS  Google Scholar 

  • Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B (2010) Epitaxial growth of a silicene sheet. Appl Phys Lett 97:223109

    Article  ADS  Google Scholar 

  • Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101

    Article  ADS  Google Scholar 

  • Li ZY, Zhang WH, Luo Y, Yang JL, Hou JG (2009) How graphene is cut upon oxidation? J Am Chem Soc 131:6320

    Article  Google Scholar 

  • Liu JZ, Trimarchi G, Zunger A (2007) strain-minimizing tetrahedral networks of semiconductor alloys. Phys Rev Lett 99:145501

    Google Scholar 

  • Luo X, Yang J, Liu H, Wu X, Wang Y, Ma Y, Wei S-H, Gong X, Xiang HJ (2011) Prediction of silicon-based layered structures for optoelectronic applications. J Am Chem Soc 133:16285

    Article  Google Scholar 

  • Mattson EC, Pu H, Cui S, Schofield MA, Rhim S, Lu G, Nasse MJ, Ruoff RS, Weinert M, Gajdardziska-Josifovska M, Chen J, Hirschmug CJ (2011) Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum. ACS Nano 5:9710

    Article  Google Scholar 

  • Meng L et al (2013) Buckled silicene formation on Ir(111). Nano Lett 13:685

    Article  ADS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature (London) 438:197

    Article  ADS  Google Scholar 

  • Novoselov KS, McCann E, Morozov SV, Falko VI, Katsnelson MI, Zeitler U, Jiang D, Schedin F, Geim AK (2006) Unconventional quantum Hall effect and Berry’s phase of 2ϕ in bilayer graphene. Nat Phys 2:177

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made Simple. Phys Rev Lett 77:3865

    Article  ADS  Google Scholar 

  • Peres NMR (2010) Colloquium: The transport properties of graphene: An introduction. Rev Mod Phys 82:2673

    Article  ADS  Google Scholar 

  • Slijivancanin Z, Andersen M, Hornekar L, Hammer B (2011) Structure and stability of small H clusters on graphene. Phys Rev B 83:205426

    Article  ADS  Google Scholar 

  • Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: A two-dimensional hydrocarbon. Phys Rev B 75:153401

    Article  ADS  Google Scholar 

  • Son Y, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444:347

    Article  ADS  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature (London) 442:282

    Article  ADS  Google Scholar 

  • Stojkovic D, Zhang P, Lammert PE, Crespi VH (2003) Collective stabilization of hydrogen chemisorption on graphenic surfaces. Phys Rev B 68:195406

    Article  ADS  Google Scholar 

  • Takeda K, Shiraishi K (1994) Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys Rev B 50:14916

    Article  ADS  Google Scholar 

  • Thompson BC, Frechet JMJ (2008) Polymer-fullerene composite solar cells. Angew Chem Int Ed 47:57

    Article  Google Scholar 

  • Tsetseris L, Pantelides ST (2012) Hydrogen uptake by graphene and nucleation of graphane. J Mater Sci 47:7571

    Article  ADS  Google Scholar 

  • Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25

    Article  ADS  Google Scholar 

  • van de Walle A, Asta M, Ceder G (2002) The alloy theoretic automated toolkit: a user guide. CALPHAD Comput Coupling Phase Diagr Thermochem 26:539

    Article  Google Scholar 

  • Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108:155501

    Article  ADS  Google Scholar 

  • Vogt P, Capiod P, Berthe M, Resta A, De Padova P, Bruhn T, Le Lay G, Grandidier B (2014) Synthesis and electrical conductivity of multilayer silicene. Appl Phys Lett 104:021602

    Article  ADS  Google Scholar 

  • Wang X, Tabakman SM, Dai H (2008) Atomic layer deposition of metal oxides on pristine and functionalized graphene. J Am Chem Soc 130:8152

    Article  Google Scholar 

  • Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768

    Article  ADS  Google Scholar 

  • Wassmann T, Seitsonen AP, Saitta AM, Lazzeri M, Mauri F (2010) Clar’s theory, pi-electron distribution, and geometry of graphene nanoribbons. J Am Chem Soc 132:3440

    Article  Google Scholar 

  • Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3:404

    Article  ADS  Google Scholar 

  • Wei S-H, Ferreira LG, Zunger A (1990) First-principles calculation of temperature-composition phase diagrams of semiconductor alloys. Phys Rev B 41:8240

    Article  ADS  Google Scholar 

  • Wei S-H, Zhang SB, Zunger A (1999) Effects of Na on the electrical and structural properties of CuInSe2. J Appl Phys 85:7214

    Article  ADS  Google Scholar 

  • Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J (2009) Graphene oxide: Structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3:2547

    Article  Google Scholar 

  • Xiang HJ, Kan EJ, Wei S-H, Whangbo M-H, Yang JL (2009) “Narrow” graphene nanoribbons made easier by partial Hydrogenation. Nano Lett 9:4025

    Article  ADS  Google Scholar 

  • Xiang HJ, Kan EJ, Wei S-H, Gong XG, Wangbo M-H (2010a) Thermodynamically stable single-side hydrogenated graphene. Phys Rev B 82:165425

    Article  ADS  Google Scholar 

  • Xiang HJ, Wei S-H, Gong XG (2010b) Structural motifs in oxidized graphene: A genetic algorithm study based on density functional theory. Phys Rev B 82:035416

    Article  ADS  Google Scholar 

  • Xiang HJ, Huang B, Li ZY, Wei S-H, Yang JL, Gong XG (2012) Ordered Semiconducting Nitrogen-Graphene Alloys. Phys Rev X 2:011003

    Google Scholar 

  • Xiang HJ, Huang B, Kan E, Wei S-H, Gong X-G (2013) Towards direct-gap silicon phases by the inverse band structure design approach. Phys Rev Lett 110:118702

    Article  ADS  Google Scholar 

  • Yan J-A, Xian L, Chou MY (2009) Structural and electronic properties of oxidized graphene. Phys Rev Lett 103:086802

    Article  ADS  Google Scholar 

  • Yang JH, Zhang Y, Yin W, Gong XG, Yakobson BI, Wei S-H (2017a) Two-dimensional SiS layers with promising electronic and optoelectronic properties: Theoretical prediction. Nano Lett 16:1110

    Article  ADS  Google Scholar 

  • Yang J-H, Yuan Q, Deng H-X, Wei S-H, Yakobson BI (2017b) Earth-abundant and non-toxic SiX (X = S, Se) monolayers as highly efficient thermoelectric materials. J Phys Chem C 121:123

    Article  Google Scholar 

  • Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature (London) 438:201

    Article  ADS  Google Scholar 

  • Zhang WH, Carravetta V, Li ZY, Luo Y, Yang JL (2009a) Oxidation states of graphene: Insights from computational spectroscopy. J Chem Phys 131:244505

    Article  ADS  Google Scholar 

  • Zhang Y, Tang T-T, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009b) Direct observation of a widely tunable bandgap in bilayer graphene. Nature (London) 459:820

    Article  ADS  Google Scholar 

  • Zhang Y, Rubio A, Le Lay G (2017) Emergent elemental two-dimensional materials beyond graphene. J Phys D Appl Phys 50:053004

    Article  ADS  Google Scholar 

  • Zhou J, Wang Q, Sun Q, Chen XS, Kawazoe Y, Jena P (2009) Ferromagnetism in semihydrogenated graphene sheet. Nano Lett 9:3867

    Article  ADS  Google Scholar 

  • Zhu Z, Guan J, Liu D, Tománek D (2015) Designing isoelectronic counterparts to layered group v semiconductors. ACS Nano 9:8284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Huai Wei .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Huang, B., Wei, SH. (2018). Functionalizing Two-Dimensional Materials for Energy Applications. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics