Skip to main content

Modeling Disordered and Nanostructured Graphene

  • Living reference work entry
  • First Online:

Abstract

Being isolated for the first time in 2004, graphene has started an entire new field of two-dimensional (2D) materials driven by novel properties and phenomena observed in these materials as well as their potential technological applications. Due to their low-dimensional nature, the effects of lattice disorder and boundaries in 2D materials are enhanced in comparison to bulk materials. This chapter covers the most important contributions of computational modeling to predicting the structure and properties of lattice imperfections in graphene, namely, the point defects, topological defects, and edges, and draws connections to the subsequent experimental works confirming these predictions.

This is a preview of subscription content, log in via an institution.

References

  • Akhmerov AR, Beenakker CWJ (2008) Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys Rev B 77:085423

    Article  ADS  Google Scholar 

  • Alden JS et al (2013) Strain solitons and topological defects in bilayer graphene. Proc Natl Acad Sci 110:11256–11260

    Article  ADS  Google Scholar 

  • An J et al (2011) Domain (grain) boundaries and evidence of “Twinlike” structures in chemically vapor deposited grown graphene. ACS Nano 5:2433–2439

    Article  Google Scholar 

  • Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau CN (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotechnol 4:562–566

    Article  ADS  Google Scholar 

  • Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6:2748

    Article  ADS  Google Scholar 

  • Butz B et al (2014) Dislocations in bilayer graphene. Nature 505:533–537

    Article  ADS  Google Scholar 

  • Cai J et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473

    Article  ADS  Google Scholar 

  • Carraro C, Nelson DR (1993) Grain-boundary buckling and spin-glass models of disorder in membranes. Phys Rev E 48:3082

    Article  ADS  Google Scholar 

  • Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  ADS  Google Scholar 

  • Chen JH et al (2014) Controlled growth of a line defect in graphene and implications for gate-tunable valley filtering. Phys Rev B 89:121407

    Article  ADS  Google Scholar 

  • El-Barbary AA, Telling RH, Ewels CP, Heggie MI, Briddon PR (2003) Structure and energetics of the vacancy in graphite. Phys Rev B 68:144107

    Article  ADS  Google Scholar 

  • Esquinazi P, Spemann D, Höhne R, Setzer A, Han K-H, Butz T (2003) Induced magnetic ordering by proton irradiation in graphite. Phys Rev Lett 91:227201

    Article  ADS  Google Scholar 

  • Ewels CP, Telling RH, El-Barbary AA, Heggie MI, Briddon PR (2003) Metastable Frenkel pair defect in graphite: source of Wigner energy? Phys Rev Lett 91:025505

    Article  ADS  Google Scholar 

  • Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923

    Article  ADS  Google Scholar 

  • Gargiulo F, Yazyev OV (2018) Structural and electronic transformation in low-angle twisted bilayer graphene. 2D Mater 5:015019

    Article  Google Scholar 

  • Gargiulo F et al (2014) Electronic transport in graphene with aggregated hydrogen adatoms. Phys Rev Lett 113:246601

    Article  ADS  Google Scholar 

  • González-Herrero H et al (2016) Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 352:437–441

    Article  ADS  Google Scholar 

  • Gunlycke D, White CT (2011) Graphene valley filter using a line defect. Phys Rev Lett 106:136806

    Article  ADS  Google Scholar 

  • Han MY, Ozyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805

    Article  ADS  Google Scholar 

  • Huang PY et al (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392

    Article  ADS  Google Scholar 

  • Ju L et al (2015) Topological valley transport at bilayer graphene domain walls. Nature 520:650–655

    Article  ADS  Google Scholar 

  • Kim K, Lee Z, Regan W, Kisielowski C, Crommie MF, Zettl A (2011) Grain boundary mapping in polycrystalline graphene. ACS Nano 5:2142–2146

    Article  Google Scholar 

  • Kotakoski J, Krasheninnikov AV, Kaiser U, Meyer JC (2011) From point defects in graphene to two-dimensional amorphous carbon. Phys Rev Lett 106:105505

    Article  ADS  Google Scholar 

  • Krasheninnikov AV, Lehtinen PO, Foster AS, Nieminen RM (2006) Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chem Phys Lett 418:132

    Article  ADS  Google Scholar 

  • Lee G-D, Wang CZ, Yoon E, Hwang N-M, Kim D-Y, Ho KM (2005) Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers. Phys Rev Lett 95:205501

    Article  ADS  Google Scholar 

  • Lehtinen PO, Foster AS, Ma Y, Krasheninnikov AV, Nieminen RM (2004) Irradiation-induced magnetism in graphite: a density functional study. Phys Rev Lett 93:187202

    Article  ADS  Google Scholar 

  • Lehtinen O, Kurasch S, Krasheninnikov AV, Kaiser U (2013) Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation. Nat Commun 4:2098

    Article  ADS  Google Scholar 

  • Li L, Reich S, Robertson J (2005) Defect energies of graphite: density-functional calculations. Phys Rev B 72:184109

    Article  ADS  Google Scholar 

  • Liu Y, Yakobson BI (2010) Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett 10:2178–2183

    Article  ADS  Google Scholar 

  • Magda GZ et al (2014) Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514:608–611

    Article  ADS  Google Scholar 

  • Mermin ND (1968) Crystalline order in two dimensions. Phys Rev 176:250–254

    Article  ADS  Google Scholar 

  • Mizes HA, Foster JS (1989) Long-range electronic perturbations caused by defects using scanning tunneling microscopy. Science 244:559

    Article  ADS  Google Scholar 

  • Najmaei S et al (2013) Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater 12:754–759

    Article  ADS  Google Scholar 

  • Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954

    Article  ADS  Google Scholar 

  • Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  ADS  Google Scholar 

  • Novoselov KS et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  ADS  Google Scholar 

  • Pereira VM, Guinea F, Lopes dos Santos JMB, Peres NMR, Castro Neto AH (2006) Disorder induced localized states in graphene. Phys Rev Lett 96:036801

    Article  ADS  Google Scholar 

  • Read WT, Shockley W (1950) Dislocation models of crystal grain boundaries. Phys Rev 78:275

    Article  ADS  Google Scholar 

  • Ruffieux P et al (2012) Electronic structure of atomically precise graphene nanoribbons. ACS Nano 6:6930–6935

    Article  Google Scholar 

  • Ruffieux P et al (2016) On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531:489–492

    Article  ADS  Google Scholar 

  • San-Jose P, Gorbachev RV, Geim AK, Novoselov KS, Guinea F (2014) Stacking boundaries and transport in bilayer graphene. Nano Lett 14:2052–2057

    Article  ADS  Google Scholar 

  • Seung HS, Nelson DR (1988) Defects in flexible membranes with crystalline order. Phys Rev A 38:1005

    Article  ADS  Google Scholar 

  • Son Y-W, Cohen ML, Louie SG (2006a) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803

    Article  ADS  Google Scholar 

  • Son Y-W, Cohen ML, Louie SG (2006b) Half-metallic graphene nanoribbons. Nature 444:347

    Article  ADS  Google Scholar 

  • Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503

    Google Scholar 

  • Tao C et al (2011) Spatially resolving edge states of chiral graphene nanoribbons. Nat Phys 7:616–620

    Article  Google Scholar 

  • Telling RH, Ewels CP, El-Barbary AA, Heggie MI (2003) Wigner defects bridge the graphite gap. Nat Mater 2:333–337

    Article  ADS  Google Scholar 

  • Tison Y et al (2014) Grain boundaries in graphene on SiC(0001̅) substrate. Nano Lett 14:6382–6386

    Article  ADS  Google Scholar 

  • Ugeda MM, Brihuega I, Guinea F, Gómez-Rodríguez JM (2010) Missing atom as a source of carbon magnetism. Phys Rev Lett 104:096804

    Article  ADS  Google Scholar 

  • van der Zande AM et al (2013) Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater 12:554–561

    Article  ADS  Google Scholar 

  • Wehling TO, Yuan S, Lichtenstein AI, Geim AK, Katsnelson MI (2010) Resonant scattering by realistic impurities in graphene. Phys Rev Lett 105:056802

    Article  ADS  Google Scholar 

  • Yang B, Xu H, Lu J, Loh KP (2014) Periodic grain boundaries formed by thermal reconstruction of polycrystalline graphene film. J Am Chem Soc 136:12041–12046

    Article  Google Scholar 

  • Yazyev OV (2008) Magnetism in disordered graphene and irradiated graphite. Phys Rev Lett 101:037203

    Article  ADS  Google Scholar 

  • Yazyev OV, Chen YP (2014) Polycrystalline graphene and other two-dimensional materials. Nat Nanotechnol 9:755–767

    Article  ADS  Google Scholar 

  • Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys Rev B 75:125408

    Article  ADS  Google Scholar 

  • Yazyev OV, Katsnelson MI (2008) Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys Rev Lett 100:047209

    Article  ADS  Google Scholar 

  • Yazyev OV, Louie SG (2010a) Topological defects in graphene: dislocations and grain boundaries. Phys Rev B 81:195420

    Article  ADS  Google Scholar 

  • Yazyev OV, Louie SG (2010b) Electronic transport in polycrystalline graphene. Nat Mater 9:806–809

    Article  ADS  Google Scholar 

  • Yazyev OV, Tavernelli I, Rothlisberger U, Helm L (2007) Early stages of radiation damage in graphite and carbon nanostructures: a first-principles molecular dynamics study. Phys Rev B 75:115418

    Article  ADS  Google Scholar 

  • Yazyev OV, Capaz RB, Louie SG (2011) Theory of magnetic edge states in chiral graphene nanoribbons. Phys Rev B 84:115406

    Article  ADS  Google Scholar 

  • Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    Article  ADS  Google Scholar 

  • Zhang X et al (2013a) Experimentally engineering the edge termination of graphene nanoribbons. ACS Nano 7:198–202

    Article  Google Scholar 

  • Zhang Z, Zou X, Crespi VH, Yakobson BI (2013b) Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano 7:10475–10481

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Graphene Flagship consortium (Grant agreement No. 696656) and by the NCCR MARVEL, funded by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Yazyev .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yazyev, O.V. (2018). Modeling Disordered and Nanostructured Graphene. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics