Skip to main content

Long Time-Scale Atomistic Modeling and Simulation of Deformation and Flow in Solids

  • Living reference work entry
  • First Online:

Abstract

Atom-based modeling and simulation are essential for the understanding and development of structural materials such as crystalline and amorphous metals. Classical molecular dynamics simulation enables the following of atomic-level structural evolution to elucidate the atomic processes underlying many macroscopic behaviors; however its predictive power is constrained by an intrinsic time-scale limitation. Here, we describe an alternative approach based on potential energy landscape modeling and transition state theory to probe the microscopic mechanisms controlling deformation and plastic flow observed in experiments. We survey several examples of slow deformation in crystals and metallic glasses to illustrate the computational algorithms used to perform the simulations and to reveal the underpinning elementary plastic processes that operate in crystalline and amorphous materials. We first show the evolution of dislocations and their interactions with obstacles over a wide range of strain rates and temperatures and discuss how they lead to macroscopic behaviors such as flow stress upturn and dislocation channeling. Then we turn to amorphous plasticity where discrete stress relaxation (avalanche) processes arise in serrated flow and creep in metallic glasses. A nonlinear interplay between nonaffine atomic displacement and local shear transformation distortion is revealed that provides a molecular explanation of the deformation-rate upturn.

This is a preview of subscription content, log in via an institution.

References

  • Antonaglia J, Wright WJ, Gu X, Byer RR, Hufnagel TC, LeBlanc M, Uhl JT, Dahmen KA (2014a) Bulk metallic glasses deform via slip avalanches. Phys Rev Lett 112(15):155501

    Article  ADS  Google Scholar 

  • Antonaglia J, Xie X, Schwarz G, Wraith M, Qiao J, Zhang Y, Liaw PK, Uhl JT, Dahmen KA (2014b) Tuned critical avalanche scaling in bulk metallic glasses. Sci Rep 4:4382

    Article  ADS  Google Scholar 

  • Argon AS (1979) Plastic deformation in metallic glasses. Acta Metall 27:47–58

    Article  Google Scholar 

  • Armstrong RW, Arnold W, Zerilli FJ (2009) Dislocation mechanics of copper and iron in high rate deformation tests. J Appl Phys 105(2):023511–023517

    Article  ADS  Google Scholar 

  • Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV (2007) Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng 15(6):553

    Article  ADS  Google Scholar 

  • Bacon DJ, Osetsky YN, Rong Z (2006) Computer simulation of reactions between an edge dislocation and glissile self-interstitial clusters in iron. Philos Mag 86(25–26):3921–3936

    Article  ADS  Google Scholar 

  • Bacon DJ, Osetsky YN, Rodney D (2009) Chapter 88 dislocation–obstacle interactions at the atomic level. In: Hirth JP, Kubin LP (eds) Dislocations in solids, vol 15. Elsevier, Burlington, pp 1–90

    Chapter  Google Scholar 

  • Bai Z, Fan Y (2018) Abnormal strain rate sensitivity driven by a unit dislocation-obstacle interaction in BCC Fe. Phys Rev Lett 120(12):125504

    Article  ADS  Google Scholar 

  • Bai XM, Voter AF, Hoagland RG, Nastasi M, Uberuaga BP (2010) Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327(5973):1631–1634

    Article  ADS  Google Scholar 

  • Bakó B, Groma I, Györgyi G, Zimányi G (2006) Dislocation patterning: the role of climb in meso-scale simulations. Comput Mater Sci 38(1):22–28

    Article  Google Scholar 

  • Barkema GT, Mousseau N (1996) Event-based relaxation of continuous disordered systems. Phys Rev Lett 77(21):4358–4361

    Article  ADS  Google Scholar 

  • Boyle JT, Spence J (2013) Stress analysis for creep. Elsevier, Kent

    Google Scholar 

  • Brechet Y, Estrin Y (1995) On the influence of precipitation on the portevin-le chatelier effect. Acta Metall Mater 43(3):955–963

    Article  Google Scholar 

  • Bulatov VV, Hsiung LL, Tang M, Arsenlis A, Bartelt MC, Cai W, Florando JN, Hiratani M, Rhee M, Hommes G, Pierce TG, de la Rubia TD (2006) Dislocation multi-junctions and strain hardening. Nature 440(7088):1174–1178

    Article  ADS  Google Scholar 

  • Campbell JD, Ferguson WG (1970) The temperature and strain-rate dependence of the shear strength of mild steel. Philos Mag 21(169):63–82

    Article  ADS  Google Scholar 

  • Cances E, Legoll F, Marinica MC, Minoukadeh K, Willaime F (2009) Some improvements of the activation-relaxation technique method for finding transition pathways on potential energy surfaces. J Chem Phys 130(11):114711. https://doi.org/10.1063/1.3088532

    Article  ADS  Google Scholar 

  • Cao AJ, Cheng YQ, Ma E (2009) Structural processes that initiate shear localization in metallic glass 57:5146–5155

    Google Scholar 

  • Cao P, Li M, Heugle RJ, Park HS, Lin X (2012) A self-learning metabasin escape algorithm and the metabasin correlation length of supercooled liquids. Phys Rev E 86:016710

    Article  ADS  Google Scholar 

  • Cao P, Park HS, Lin X (2013) Strain-rate and temperature-driven transition in the shear transformation zone for two-dimensional amorphous solids. Phys Rev E 88(4):042404

    Article  ADS  Google Scholar 

  • Cao P, Lin X, Park HS (2014a) Surface shear-transformation zones in amorphous solids. Phys Rev E 90(1):012311

    Article  ADS  Google Scholar 

  • Cao P, Lin X, Park HS (2014b) Strain-rate and temperature dependence of yield stress of amorphous solids via self-learning metabasin escape algorithm. J Mech Phys Solids 68: 239–250

    Article  ADS  Google Scholar 

  • Cao P, Short MP, Yip S (2017) Understanding the mechanisms of amorphous creep through molecular simulation. Proc Natl Acad Sci 114(52):13631–13636

    Article  ADS  Google Scholar 

  • Cao P, Dahmen KA, Kushima A, Wright WJ, Park HS, Short MP, Yip S (2018) Nanomechanics of slip avalanches in amorphous plasticity. J Mech Phys Solids 114:158–171

    Article  ADS  Google Scholar 

  • Chaari N, Clouet E, Rodney D (2014) First-principles study of secondary slip in zirconium. Phys Rev Lett 112(7):075504

    Article  ADS  Google Scholar 

  • Dezerald L, Rodney D, Clouet E, Ventelon L, Willaime F (2016) Plastic anisotropy and dislocation trajectory in BCC metals. Nat Commun 7:11695

    Article  ADS  Google Scholar 

  • Domain C, Monnet G (2005) Simulation of screw dislocation motion in iron by molecular dynamics simulations. Phys Rev Lett 95(21):215506

    Article  ADS  Google Scholar 

  • Dunlop JW, Bréchet YJM, Legras L, Estrin Y (2007) Dislocation density-based modelling of plastic deformation of zircaloy-4. Mater Sci Eng A 443(1–2):77–86

    Article  Google Scholar 

  • Dutta A, Bhattacharya M, Gayathri N, Das GC, Barat P (2012) The mechanism of climb in dislocation–nanovoid interaction. Acta Mater 60(9):3789–3798

    Article  Google Scholar 

  • El-Awady JA, Bulent Biner S, Ghoniem NM (2008) A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes. J Mech Phys Solids 56(5):2019–2035

    Article  ADS  MATH  Google Scholar 

  • Falk ML, Langer JS (1998) Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E 57(6):7192–7205

    Article  ADS  Google Scholar 

  • Falk M, Maloney C (2010) Simulating the mechanical response of amorphous solids using atomistic methods. Eur Phys J B 75(4):405–413

    Article  ADS  Google Scholar 

  • Fan Y (2013) Atomistic simulation of defect structure evolution and mechanical properties at long time scales, Thesis

    Google Scholar 

  • Fan Y, Osetsky YN, Yip S, Yildiz B (2012) Onset mechanism of strain-rate-induced flow stress upturn. Phys Rev Lett 109(13):135503. https://doi.org/10.1103/PhysRevLett.109.135503

    Article  ADS  Google Scholar 

  • Fan Y, Osetskiy YN, Yip S, Yildiz B (2013) Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations. Proc Natl Acad Sci 110(44):17756–17761

    Article  ADS  Google Scholar 

  • Fan Y, Yip S, Yildiz B (2014) Autonomous basin climbing method with sampling of multiple transition pathways: application to anisotropic diffusion of point defects in HCP Zr. J Phys Condens Matter 26(36):365402

    Article  Google Scholar 

  • Ferguson WG, Hauser FE, Dorn JE (1967) Dislocation damping in zinc single crystals. Br J Appl Phys 18(4):411

    Article  ADS  Google Scholar 

  • Follansbee PS, Kocks UF (1988) A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall 36(1):81–93

    Article  Google Scholar 

  • Follansbee PS, Regazzoni G, Kocks UF (1984) Mechanical properties of materials at high rates of strain (9th ed.). The institute of Physics, Inst Phys Conf Ser, p 71

    Google Scholar 

  • Gordon PA, Neeraj T, Li Y, Li J (2010) Screw dislocation mobility in BCC metals: the role of the compact core on double-kink nucleation. Model Simul Mater Sci Eng 18(8):085008

    Article  ADS  Google Scholar 

  • Gussev MN, Field KG, Busby JT (2015) Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels. J Nucl Mater 460:139–152

    Article  ADS  Google Scholar 

  • Haixuan X, Yuri NO, Roger ES (2012) Self-evolving atomistic kinetic Monte Carlo: fundamentals and applications. J Phys Condens Matter 24(37):375402

    Article  Google Scholar 

  • Harris MB, Watts LS, Homer ER (2016) Competition between shear band nucleation and propagation across rate-dependent flow transitions in a model metallic glass. Acta Mater 111:273–282

    Article  Google Scholar 

  • Henkelman G, Jonsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 111(15):7010–7022. https://doi.org/10.1063/1.480097

    Article  ADS  Google Scholar 

  • Hoge KG, Mukherjee AK (1977) The temperature and strain rate dependence of the flow stress of tantalum. J Mater Sci 12(8):1666–1672

    Article  ADS  Google Scholar 

  • Huang Y, Shen J, Chiu Y, Chen J, Sun J (2009) Indentation creep of an Fe-based bulk metallic glass. Intermetallics 17(4):190–194

    Article  Google Scholar 

  • Hull D, Bacon D (2011) Introduction to dislocations (5th ed.). Butterworth-Heinemann, Oxford, ISBN 9780080966724

    Chapter  Google Scholar 

  • Iyer M, Radhakrishnan B, Gavini V (2015) Electronic-structure study of an edge dislocation in aluminum and the role of macroscopic deformations on its energetics. J Mech Phys Solids 76:260–275

    Article  ADS  MathSciNet  Google Scholar 

  • Jumonji K, Ueta S, Miyahara A, Kato M, Sato A (1996) Rapid work hardening caused by cube cross slip in Ni3Al single crystals. Philos Mag A 73(2):345–364

    Article  ADS  Google Scholar 

  • Kabir M, Lau TT, Rodney D, Yip S, Van Vliet KJ (2010) Predicting dislocation climb and creep from explicit atomistic details. Phys Rev Lett 105(9):095501

    Article  ADS  Google Scholar 

  • Kioussis NG, Ghoniem NM (2010) Modeling of dislocation interaction with solutes, nano-precipitates and interfaces: a multiscale challenge. J Comput Theor Nanosci 7(8):1317–1346

    Article  Google Scholar 

  • Klueh R (2005) Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int Mater Rev 50(5):287–310

    Article  Google Scholar 

  • Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and Kinetics of Slip (9th ed.). Pergamon Press, New York. Prog Mater Sci, 19(9):p. 110

    Google Scholar 

  • Krisponeit J-O, Pitikaris S, Avila KE, Küchemann S, Krüger A, Samwer K (2014) Crossover from random three-dimensional avalanches to correlated nano shear bands in metallic glasses. Nat Commun 5:3616

    Article  Google Scholar 

  • Kumar A, Hauser FE, Dorn JE (1968) Viscous drag on dislocations in aluminum at high strain rates. Acta Metall 16(9):1189–1197

    Article  Google Scholar 

  • Kushima A, Lin X, Li J, Eapen J, Mauro JC, Qian X, Diep P, Yip S (2009a) Computing the viscosity of supercooled liquids. J Chem Phys 130(22):224504

    Article  ADS  Google Scholar 

  • Kushima A, Lin X, Li J, Qian X, Eapen J, Mauro JC, Diep P, Yip S (2009b) Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior. J Chem Phys 131(16):164505–164509

    Google Scholar 

  • Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci 99(20):12562–12566

    Article  ADS  Google Scholar 

  • Lebensohn RA, Tomé CN, CastaÑeda PP (2007) Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos Mag 87(28):4287–4322

    Article  ADS  Google Scholar 

  • Lebyodkin MA, Brechet Y, Estrin Y, Kubin LP (1995) Statistics of the catastrophic slip events in the portevin-le chatelier effect. Phys Rev Lett 74(23):4758–4761

    Article  ADS  Google Scholar 

  • Lu J, Ravichandran G, Johnson WL (2003) Deformation behavior of the Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater 51(12):3429–3443

    Article  Google Scholar 

  • Maaß R, Klaumünzer D, Löffler J (2011) Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater 59(8):3205–3213

    Article  Google Scholar 

  • Matsukawa Y, Zinkle SJ (2004) Dynamic observation of the collapse process of a stacking fault tetrahedron by moving dislocations. J Nucl Mater 329–333, Part B(0):919–923

    Google Scholar 

  • Mendelev MI, Han S, Srolovitz DJ, Ackland GJ, Sun DY, Asta M (2003) Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos Mag 83(35):3977–3994

    Article  ADS  Google Scholar 

  • Needleman A, Van der Giessen E (2005) Elasticity: finite element modeling A2 – Buschow, K.H. Jürgen. Elsevier, Oxford, pp 1–6

    Google Scholar 

  • Nieh T, Wadsworth J (2006) Homogeneous deformation of bulk metallic glasses. Scr Mater 54(3):387–392

    Article  Google Scholar 

  • Norfleet DM, Dimiduk DM, Polasik SJ, Uchic MD, Mills MJ (2008) Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater 56(13):2988–3001

    Article  Google Scholar 

  • Onimus F, Béchade J-L (2009) A polycrystalline modeling of the mechanical behavior of neutron irradiated zirconium alloys. J Nucl Mater 384(2):163–174

    Article  ADS  Google Scholar 

  • Onimus F, Monnet I, Béchade JL, Prioul C, Pilvin P (2004) A statistical TEM investigation of dislocation channeling mechanism in neutron irradiated zirconium alloys. J Nucl Mater 328(2–3):165–179

    Article  ADS  Google Scholar 

  • Osetsky YN, Matsukawa Y, Stoller RE, Zinkle SJ (2006a) On the features of dislocation–obstacle interaction in thin films: large-scale atomistic simulation. Philos Mag Lett 86(8):511–519

    Article  ADS  Google Scholar 

  • Osetsky YN, Rodney D, Bacon DJ (2006b) Atomic-scale study of dislocation–stacking fault tetrahedron interactions. Part I: mechanisms. Philos Mag 86(16):2295–2313

    Article  ADS  Google Scholar 

  • Preston DL, Tonks DL, Wallace DC (2003) Model of plastic deformation for extreme loading conditions. J Appl Phys 93(1):211–220

    Article  ADS  Google Scholar 

  • Proville L, Rodney D, Marinica M-C (2012) Quantum effect on thermally activated glide of dislocations. Nat Mater 11(10):845–849

    Article  ADS  Google Scholar 

  • Regazzoni G, Kocks UF, Follansbee PS (1987) Dislocation kinetics at high strain rates. Acta Metall 35(12):2865–2875

    Article  Google Scholar 

  • Remington BA, Allen P, Bringa EM, Hawreliak J, Ho D, Lorenz KT, Lorenzana H, McNaney JM, Meyers MA, Pollaine SW, Rosolankova K, Sadik B, Schneider MS, Swift D, Wark J, Yaakobi B (2006) Material dynamics under extreme conditions of pressure and strain rate. Mater Sci Technol 22(4):474–488

    Article  Google Scholar 

  • Rodney D, Proville L (2009) Stress-dependent peierls potential: influence on kink-pair activation. Phys Rev B 79(9):094108

    Article  ADS  Google Scholar 

  • Schuh C, Nieh T, Kawamura Y (2002) Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J Mater Res 17(7):1651–1654

    Article  ADS  Google Scholar 

  • Schuh CA, Hufnagel TC, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater 55(12):4067–4109

    Article  Google Scholar 

  • Schwarz KW (1999) Simulation of dislocations on the mesoscopic scale. I. Methods and examples. J Appl Phys 85(1):108–119

    Article  ADS  Google Scholar 

  • Sentjabrskaja T, Chaudhuri P, Hermes M, Poon W, Horbach J, Egelhaaf S, Laurati M (2015) Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities. Sci Rep 5:11884

    Article  ADS  Google Scholar 

  • Shan Z, Li J, Cheng Y, Minor A, Asif SS, Warren O, Ma E (2008) Plastic flow and failure resistance of metallic glass: insight from in situ compression of nanopillars. Phys Rev B 77(15):155419

    Article  ADS  Google Scholar 

  • Shin CS, Fivel MC, Verdier M, Robertson C (2005) Dislocation dynamics simulations of fatigue of precipitation-hardened materials. Mater Sci Eng A 400–401:166–169

    Article  Google Scholar 

  • Siebenbürger M, Ballauff M, Voigtmann T (2012) Creep in colloidal glasses. Phys Rev Lett 108(25):255701

    Article  ADS  Google Scholar 

  • Sorensen MR, Voter AF (2000) Temperature-accelerated dynamics for simulation of infrequent events. J Chem Phys 112(21):9599–9606

    Article  ADS  Google Scholar 

  • Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall 25(4):407–415

    Article  Google Scholar 

  • Steinberg DJ, Lund CM (1989) A constitutive model for strain rates from 10[sup - 4] to 10[sup 6] s[sup - 1]. J Appl Phys 65(4):1528–1533

    Article  ADS  Google Scholar 

  • Suo Z (2000) Evolving material structures of small feature sizes. Int J Solids Struct 37(1):367–378

    Article  MATH  Google Scholar 

  • Tao W, Cao P, Park HS (2018a) Atomistic simulation of the rate-dependent ductile-to-brittle failure transition in bicrystalline metal nanowires. Nano lett 18(2):1296–1304

    Article  ADS  Google Scholar 

  • Tao W, Cao P, Park HS (2018b) Superplastic creep of metal nanowires from rate-dependent plasticity transition. ACS nano 12(5):4984–4992

    Article  Google Scholar 

  • Terentyev D, Grammatikopoulos P, Bacon DJ, Osetsky YN (2008) Simulation of the interaction between an edge dislocation and a< 1 0 0> interstitial dislocation loop in α-iron, Acta Materialia 56(18):5034–5046

    Article  Google Scholar 

  • Terentyev D, Osetsky YN, Bacon DJ (2010a) Competing processes in reactions between an edge dislocation and dislocation loops in a body-centred cubic metal. Scr Mater 62(9):697–700

    Article  Google Scholar 

  • Terentyev D, Bonny G, Domain C, Pasianot RC (2010b) Interaction of a 1/2< 111> screw dislocation with Cr precipitates in BCC Fe studied by molecular dynamics. Phys Rev B 81(21):214106

    Article  ADS  Google Scholar 

  • Turner PA, Tomé CN, Christodoulou N, Woo CH (1999) A self-consistent model for polycrystals undergoing simultaneous irradiation and thermal creep. Philos Mag A 79(10):2505–2524

    Article  ADS  Google Scholar 

  • Van der Giessen E, Deshpande VS, Cleveringa HHM, Needleman A (2001) Discrete dislocation plasticity and crack tip fields in single crystals. J Mech Phys Solids 49(9):2133–2153

    Article  ADS  MATH  Google Scholar 

  • Voter AF (1997) A method for accelerating the molecular dynamics simulation of infrequent events. J Chem Phys 106(11):4665–4677

    Article  ADS  Google Scholar 

  • Wang H, Xu DS, Rodney D, Veyssire P, Yang R (2013) Atomistic investigation of the annihilation of non-screw dislocation dipoles in al, cu, ni and γ-tial. Model Simul Mater Sci Eng 21(2):025002

    Article  ADS  Google Scholar 

  • Wei Y, Zhigang S (1996) Global view of microstructural evolution: energetics, kinetics and dynamical systems. Acta Mech Sinica 12(2):144–157

    Article  MATH  Google Scholar 

  • Wright WJ, Byer RR, Gu X (2013) High–speed imaging of a bulk metallic glass during uniaxial compression. Appl Phys Lett 102(24):241920

    Article  ADS  Google Scholar 

  • Wright WJ, Liu Y, Gu X, Van Ness KD, Robare SL, Liu X, Antonaglia J, LeBlanc M, Uhl JT, Hufnagel TC et al (2016) Experimental evidence for both progressive and simultaneous shear during quasistatic compression of a bulk metallic glass. J Appl Phys 119(8):084908

    Article  ADS  Google Scholar 

  • Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat Mater 1(1):45–49

    Article  ADS  Google Scholar 

  • Yan X, Cao P, Tao W, Sharma P, Park HS (2016) Atomistic modeling at experimental strain rates and timescales. J Phys D Appl Phys 49(49):493002

    Article  Google Scholar 

  • Yip S (2003) Synergistic science. Nat Mater 2(1):3–5

    Article  ADS  Google Scholar 

  • Yip S (2016) Understanding the viscosity of supercooled liquids and the glass transition through molecular simulations. Mol Simul 42(16):1330–1342

    Article  Google Scholar 

  • Yip S, Short MP (2013) Multiscale materials modelling at the mesoscale. Nat Mater 12(9):774

    Article  ADS  Google Scholar 

  • Zbib HM, de la Rubia TD (2002) A multiscale model of plasticity. Int J Plast 18(9):1133–1163

    Article  MATH  Google Scholar 

  • Zerilli FJ, Armstrong RW (1987) Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys 61(5):1816–1825

    Article  ADS  Google Scholar 

  • Zhong Y, Zhu T (2008) Simulating nanoindentation and predicting dislocation nucleation using interatomic potential finite element method. Comput Methods Appl Mech Eng 197(41–42): 3174–3181

    Article  ADS  MATH  Google Scholar 

  • Zhu T, Li J, Samanta A, Leach A, Gall K (2008) Temperature and strain-rate dependence of surface dislocation nucleation. Phys Rev Lett 100(2):025502

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to take the opportunity to thank Sidney Yip for the instrumental discussions in outlining this chapter and for the edits. PC acknowledges the support from the US Department of Energy NEUP Grant DE-NE0008450. YF also acknowledges the support from the US Army Research Office Grant No. W911NF-18-1-0119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penghui Cao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fan, Y., Cao, P. (2019). Long Time-Scale Atomistic Modeling and Simulation of Deformation and Flow in Solids. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_150-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_150-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics