Skip to main content

Mechanics of Soft Gels: Linear and Nonlinear Response

Abstract

Soft gels are materials at the core of material technological innovation, and as such, they are constantly evolving to meet different requirements in terms of performance, reliability, durability, and environmental impact. Despite many progresses made in the case of polymer gels, a consistent theoretical framework for the relationship between the microscopic structure and the mechanical properties of a wide range of materials ranging from colloidal gels to protein and biopolymer gels is still lacking. A multitude of different phenomena are observed – aging, strain stiffening, creep, banding, and fracture – that are difficult to control and properly tune to design the material properties. Here we discuss how numerical simulations of suitably designed microscopic models can help develop novel insight into the microscopic mechanisms that underlie the complex dynamics of these versatile materials. We provide an overview of the computational approach we have recently developed and of the main outcomes obtained. Finally we discuss outstanding questions and future developments.

This is a preview of subscription content, log in via an institution.

References

  • Abete T, de Candia A, Del Gado E, Fierro A, Coniglio A (2008) Dynamical heterogeneity in a model for permanent gels: different behavior of dynamical susceptibilities. Phys Rev E 78(4):041404

    Article  ADS  Google Scholar 

  • Aime S, Cipelletti L, Ramos L (2018a) Power law viscoelasticity of a fractal colloidal gel. arXiv preprint arXiv:180203820

    Google Scholar 

  • Aime S, Ramos L, Cipelletti L (2018b) Microscopic dynamics and failure precursors of a gel under mechanical load. Proc Nat Acad Sci 115(14):3587–3592

    Article  ADS  Google Scholar 

  • Alexander S (1998) Amorphous solids: their structure, lattice dynamics and elasticity. Phys Rep 296(2–4):65–236

    Article  ADS  Google Scholar 

  • Andrade EdC (1910) Proceedings of the royal society of London series A, containing papers of a mathematical and physical character, pp 1–12

    Google Scholar 

  • Angelini R, Zulian L, Fluerasu A, Madsen A, Ruocco G, Ruzicka B (2013) Dichotomic aging behaviour in a colloidal glass. Soft Matter 9(46):10955–10959

    Article  ADS  Google Scholar 

  • Angelini R, Zaccarelli E, de Melo Marques FA, Sztucki M, Fluerasu A, Ruocco G, Ruzicka B (2014) Glass–glass transition during aging of a colloidal clay. Nat Commun 5:4049

    Article  Google Scholar 

  • Arevalo RC, Kumar P, Urbach JS, Blair DL (2015) Stress heterogeneities in sheared type-I collagen networks revealed by boundary stress microscopy. PloS one 10(3):e0118021

    Article  Google Scholar 

  • Bandyopadhyay R, Liang D, Yardimci H, Sessoms D, Borthwick M, Mochrie S, Harden J, Leheny R (2004) Evolution of particle-scale dynamics in an aging clay suspension. Phys Rev Lett 93(22):228302

    Article  ADS  Google Scholar 

  • Bantawa M, Bouzid M, Del Gado E (2018, in preparation) A computational model for gel microstructure and mechanics

    Google Scholar 

  • Basquin O (1910) The Exponential Law of Endurance Tests. In: Proceedings of ASTM, vol 10, pp 625–630

    Google Scholar 

  • Bellour M, Knaebel A, Harden J, Lequeux F, Munch JP (2003) Aging processes and scale dependence in soft glassy colloidal suspensions. Phys Rev E 67(3):031405

    Article  ADS  Google Scholar 

  • Bianchi E, Capone B, Kahl G, Likos CN (2015) Soft-patchy nanoparticles: modeling and self-organization. Faraday Discuss 181:123–138

    Article  ADS  Google Scholar 

  • Blaak R, Miller MA, Hansen JP (2007) Reversible gelation and dynamical arrest of dipolar colloids. EPL (Europhys Lett) 78(2):26002

    Article  ADS  Google Scholar 

  • Blair GS (1944) Analytical and integrative aspects of the stress-strain-time problem. J Sci Inst 21(5):80

    Article  ADS  Google Scholar 

  • Blair GS, Veinoglou B (1944) A study of the firmness of soft materials based on nutting’s equation. J Sci Inst 21(9):149

    Article  ADS  Google Scholar 

  • Bonn D, Denn MM, Berthier L, Divoux T, Manneville S (2017) Yield stress materials in soft condensed matter. Rev Mod Phys 89(3):035005

    Article  ADS  Google Scholar 

  • Boromand A, Jamali S, Maia JM (2017) Structural fingerprints of yielding mechanisms in attractive colloidal gels. Soft Matter 13(2):458–473

    Article  ADS  Google Scholar 

  • Bouchaud JP (2008) Anomalous relaxation in complex systems: from stretched to compressed exponentials. In: Klages R, Radons G, Sokolov IM (eds) Anomalous transport: foundations and applications. Wiley-Blackwell, pp 327–345

    Google Scholar 

  • Bouzid M, Del Gado E (2018a, in preparation) Aging and damage accumulation in soft colloidal gels

    Google Scholar 

  • Bouzid M, Del Gado E (2018b) Network topology in soft gels: hardening and softening materials. Langmuir 34(3):773–781

    Article  Google Scholar 

  • Bouzid M, Colombo J, Barbosa LV, Del Gado E (2017) Elastically driven intermittent microscopic dynamics in soft solids. Nat Commun 8:15846

    Article  ADS  Google Scholar 

  • Bouzid M, Keshavarz B, Geri M, Divoux T, Del Gado E, McKinley GH (2018a) Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol. J Rheol 62(4):1037–1050. https://doi.org/10.1122/1.5018715

    Article  ADS  Google Scholar 

  • Bouzid M, Keshavarz B, Geri M, Divoux T, Del Gado E, McKinley GH (2018b) Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol. arXiv preprint arXiv:180507987

    Google Scholar 

  • Broedersz CP, MacKintosh FC (2014) Modeling semiflexible polymer networks. Rev Mod Phys 86(3):995

    Article  ADS  Google Scholar 

  • Caggioni M, Spicer P, Blair D, Lindberg S, Weitz D (2007) Rheology and microrheology of a microstructured fluid: the gellan gum case. J Rheol 51(5):851–865

    Article  ADS  Google Scholar 

  • Cerbino R, Trappe V (2008) Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys Rev Lett 100(18):188102

    Article  ADS  Google Scholar 

  • Chaudhuri P, Berthier L (2017) Ultra-long-range dynamic correlations in a microscopic model for aging gels. Phys Rev E 95(6):060601

    Article  ADS  Google Scholar 

  • Chaudhuri P, Hurtado PI, Berthier L, Kob W (2015) Relaxation dynamics in a transient network fluid with competing gel and glass phases. J Chem Phys 142(17):174503

    Article  ADS  Google Scholar 

  • Chen DT, Wen Q, Janmey PA, Crocker JC, Yodh AG (2010) Rheology of soft materials. Annual Reviews

    Book  Google Scholar 

  • Chung B, Ramakrishnan S, Bandyopadhyay R, Liang D, Zukoski C, Harden J, Leheny R (2006) Microscopic dynamics of recovery in sheared depletion gels. Phys Rev Lett 96(22):228301

    Article  ADS  Google Scholar 

  • Cipelletti L, Ramos L (2005) Slow dynamics in glassy soft matter. J Phys Condens Matter 17(6):R253

    Article  ADS  Google Scholar 

  • Cipelletti L, Manley S, Ball R, Weitz D (2000) Universal aging features in the restructuring of fractal colloidal gels. Phys Rev Lett 84(10):2275

    Article  ADS  Google Scholar 

  • Colombo J, Del Gado E (2014a) Self-assembly and cooperative dynamics of a model colloidal gel network. Soft Matter 10(22):4003–4015

    Article  ADS  Google Scholar 

  • Colombo J, Del Gado E (2014b) Stress localization, stiffening, and yielding in a model colloidal gel. J Rheol 58(5):1089–1116

    Article  ADS  Google Scholar 

  • Colombo J, Widmer-Cooper A, Del Gado E (2013) Microscopic picture of cooperative processes in restructuring gel networks. Phys Rev Lett 110(19):198301

    Article  ADS  Google Scholar 

  • Coniglio A, De Arcangelis L, Del Gado E, Fierro A, Sator N (2004) Percolation, gelation and dynamical behaviour in colloids. J Phys Condens Matter 16(42):S4831

    Article  ADS  Google Scholar 

  • Coniglio A, De Arcangelis L, De Candia A, Del Gado E, Fierro A, Sator N (2006) Clusters in attractive colloids. J Phys Condens Matter 18(36):S2383

    Article  Google Scholar 

  • Csikor FF, Motz C, Weygand D, Zaiser M, Zapperi S (2007) Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318(5848):251–254

    Article  ADS  Google Scholar 

  • De Candia A, Del Gado E, Fierro A, Sator N, Tarzia M, Coniglio A (2006) Columnar and lamellar phases in attractive colloidal systems. Phys Rev E 74(1):010403

    Article  Google Scholar 

  • de Cagny HC, Vos BE, Vahabi M, Kurniawan NA, Doi M, Koenderink GH, MacKintosh FC, Bonn D (2016) Porosity governs normal stresses in polymer gels. Phys Rev Lett 117(21):217802

    Article  ADS  Google Scholar 

  • Del Gado E, Kob W (2007) Length-scale-dependent relaxation in colloidal gels. Phys Rev Lett 98(2):028303

    Article  ADS  Google Scholar 

  • Del Gado E, Kob W (2010) A microscopic model for colloidal gels with directional effective interactions: network induced glassy dynamics. Soft Matter 6(7):1547–1558

    Article  ADS  Google Scholar 

  • Del Gado E, Fierro A, de Arcangelis L, Coniglio A (2004) Slow dynamics in gelation phenomena: from chemical gels to colloidal glasses. Phys Rev E 69(5):051103

    Article  ADS  Google Scholar 

  • Del Gado E, Ioannidou K, Masoero E, Baronnet A, Pellenq RM, Ulm FJ, Yip S (2014) A soft matter in construction–statistical physics approach to formation and mechanics of c–s–h gels in cement. Eur Phys J Spec Top 223(11):2285–2295

    Article  Google Scholar 

  • Di Michele L, Fiocco D, Varrato F, Sastry S, Eiser E, Foffi G (2014) Aggregation dynamics, structure, and mechanical properties of bigels. Soft Matter 10(20):3633–3648

    Article  ADS  Google Scholar 

  • Divoux T, Mao B, Snabre P (2015) Syneresis and delayed detachment in agar plates. Soft Matter 11(18):3677–3685

    Article  ADS  Google Scholar 

  • Duduta M, Ho B, Wood VC, Limthongkul P, Brunini VE, Carter WC, Chiang YM (2011) Semi-solid lithium rechargeable flow battery. Adv Energy Mater 1(4):511–516

    Article  Google Scholar 

  • Eberle AP, Porcar L (2012) Flow-sans and rheo-sans applied to soft matter. Curr Opin Colloid Interface Sci 17(1):33–43

    Article  Google Scholar 

  • Eberle AP, Wagner NJ, Castañeda-Priego R (2011) Dynamical arrest transition in nanoparticle dispersions with short-range interactions. Phys Rev Lett 106(10):105704

    Article  ADS  Google Scholar 

  • Feng J, Levine H, Mao X, Sander LM (2015) Alignment and nonlinear elasticity in biopolymer gels. Phys Rev E 91(4):042710

    Article  ADS  Google Scholar 

  • Feng J, Levine H, Mao X, Sander LM (2016) Nonlinear elasticity of disordered fiber networks. Soft Matter 12(5):1419–1424

    Article  ADS  Google Scholar 

  • Feng D, Notbohm J, Benjamin A, He S, Wang M, Ang LH, Bantawa M, Bouzid M, Del Gado E, Krishnan R et al (2018) Disease-causing mutation in α-actinin-4 promotes podocyte detachment through maladaptation to periodic stretch. Proc Nat Acad Sci 201717870

    Google Scholar 

  • Ferrero EE, Martens K, Barrat JL (2014) Relaxation in yield stress systems through elastically interacting activated events. Phys Rev Lett 113(24):248301

    Article  ADS  Google Scholar 

  • Fielding SM (2014) Shear banding in soft glassy materials. Rep Prog Phys 77(10):102601

    Article  ADS  Google Scholar 

  • Fierro A, Del Gado E, de Candia A, Coniglio A (2008) Dynamical heterogeneities in attractive colloids. J Stat Mech Theory Exp 2008(04):L04002

    Article  Google Scholar 

  • Fiocco D, Foffi G, Sastry S (2013) Oscillatory athermal quasistatic deformation of a model glass. Phys Rev E 88:020301. https://doi.org/10.1103/PhysRevE.88.020301

    Article  ADS  Google Scholar 

  • Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, vol 1. Elsevier

    MATH  Google Scholar 

  • Gallot T, Perge C, Grenard V, Fardin MA, Taberlet N, Manneville S (2013) Ultrafast ultrasonic imaging coupled to rheometry: principle and illustration. Rev Sci Inst 84(4):045107

    Article  ADS  Google Scholar 

  • Gao Y, Kim J, Helgeson ME (2015) Microdynamics and arrest of coarsening during spinodal decomposition in thermoreversible colloidal gels. Soft Matter 11(32):6360–6370

    Article  ADS  Google Scholar 

  • Godec A, Bauer M, Metzler R (2014) Collective dynamics effect transient subdiffusion of inert tracers in flexible gel networks. New J Phys 16(9):092002

    Article  Google Scholar 

  • Guo H, Ramakrishnan S, Harden JL, Leheny RL (2011) Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations. J Chem Phys 135(15):154903

    Article  ADS  Google Scholar 

  • Harden J, Guo H, Ramakrishnan S, Leheny R (2012) Gel formation and aging in weakly attractive nanocolloid suspensions. In: APS meeting abstracts

    Google Scholar 

  • Helal A, Divoux T, McKinley GH (2016) Simultaneous rheoelectric measurements of strongly conductive complex fluids. Phys Rev Appl 6(6):064004

    Article  ADS  Google Scholar 

  • Hsiao LC, Newman RS, Glotzer SC, Solomon MJ (2012) Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels. Proc Nat Acad Sci 109(40):16029–16034

    Article  ADS  Google Scholar 

  • Ilg P, Del Gado E (2011) Non-linear response of dipolar colloidal gels to external fields. Soft Matter 7(1):163–171

    Article  ADS  Google Scholar 

  • Irving J, Kirkwood J (1950) The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J Chem Phys 18(6):817–829

    Google Scholar 

  • Jabbari-Farouji S, Wegdam GH, Bonn D (2007) Gels and glasses in a single system: evidence for an intricate free-energy landscape of glassy materials. Phys Rev Lett 99(6):065701

    Article  ADS  Google Scholar 

  • Jaishankar A, McKinley GH (2012) A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proc R Soc A Math Phys Eng Sci 469:20120284

    Google Scholar 

  • Jaishankar A, McKinley GH (2014) A fractional k-bkz constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J Rheol 58(6):1751–1788

    Article  ADS  Google Scholar 

  • Jamali S, McKinley GH, Armstrong RC (2017) Microstructural rearrangements and their rheological implications in a model thixotropic elastoviscoplastic fluid. Phys Rev Lett 118(4):048003

    Article  ADS  Google Scholar 

  • Koumakis N, Petekidis G (2011) Two step yielding in attractive colloids: transition from gels to attractive glasses. Soft Matter 7(6):2456–2470

    Article  ADS  Google Scholar 

  • Krall A, Weitz D (1998) Internal dynamics and elasticity of fractal colloidal gels. Phys Rev Lett 80(4):778

    Article  ADS  Google Scholar 

  • Kurokawa A, Vidal V, Kurita K, Divoux T, Manneville S (2015) Avalanche-like fluidization of a non-Brownian particle gel. Soft Matter 11(46):9026–9037

    Article  ADS  Google Scholar 

  • Landau LD, Lifshitz E (1986) Theory of elasticity. Course of theoretical physics, vol 7, 3rd edn, Elsevier, p 109

    Google Scholar 

  • Landrum BJ, Russel WB, Zia RN (2016) Delayed yield in colloidal gels: creep, flow, and re-entrant solid regimes. J Rheol 60(4):783–807

    Article  ADS  Google Scholar 

  • Lees A, Edwards S (1972) The computer study of transport processes under extreme conditions. J Phys C Solid State Phys 5(15):1921

    Article  ADS  Google Scholar 

  • Leocmach M, Perge C, Divoux T, Manneville S (2014) Creep and fracture of a protein gel under stress. Phys Rev Lett 113(3):038303

    Article  ADS  Google Scholar 

  • Licup AJ, Münster S, Sharma A, Sheinman M, Jawerth LM, Fabry B, Weitz DA, MacKintosh FC (2015) Stress controls the mechanics of collagen networks. Proc Nat Acad Sci 112(31):9573–9578

    Article  ADS  Google Scholar 

  • Lidon P, Villa L, Manneville S (2017) Power-law creep and residual stresses in a carbopol gel. Rheol Acta 56(3):307–323

    Article  Google Scholar 

  • Lieleg O, Kayser J, Brambilla G, Cipelletti L, Bausch A (2011) Slow dynamics and internal stress relaxation in bundled cytoskeletal networks. Nat Mater 10(3):236

    Article  ADS  Google Scholar 

  • Lu PJ, Zaccarelli E, Ciulla F, Schofield AB, Sciortino F, Weitz DA (2008) Gelation of particles with short-range attraction. Nature 453:499

    Article  ADS  Google Scholar 

  • Maccarrone S, Brambilla G, Pravaz O, Duri A, Ciccotti M, Fromental JM, Pashkovski E, Lips A, Sessoms D, Trappe V et al (2010a) Ultra-long range correlations of the dynamics of jammed soft matter. Soft Matter 6(21):5514–5522

    Article  ADS  Google Scholar 

  • Maccarrone S, Brambilla G, Pravaz O, Duri A, Ciccotti M, Fromental JM, Pashkovski E, Lips A, Sessoms D, Trappe V, Cipelletti L (2010b) Ultra-long range correlations of the dynamics of jammed soft matter. Soft Matter 6(21):5514–5522

    Article  ADS  Google Scholar 

  • Macosko C (1994) Rheology. Principles, measurements, and applications. Wiley – VCH, New York

    Google Scholar 

  • Maloney CE, Lemaître A (2006) Amorphous systems in athermal, quasistatic shear. Phys Rev E 74(1):016118

    Article  ADS  Google Scholar 

  • Manley S, Wyss H, Miyazaki K, Conrad J, Trappe V, Kaufman L, Reichman D, Weitz D (2005) Glasslike arrest in spinodal decomposition as a route to colloidal gelation. Phys Rev Lett 95(23):238302

    Article  ADS  Google Scholar 

  • Mansel BW, Williams MA (2015) Internal stress drives slow glassy dynamics and quake-like behaviour in ionotropic pectin gels. Soft Matter 11(35):7016–7023

    Article  ADS  Google Scholar 

  • Mao B, Divoux T, Snabre P (2016) Normal force controlled rheology applied to agar gelation. J Rheol 60(3):473–489

    Article  ADS  Google Scholar 

  • Mao B, Divoux T, Snabre P (2017) Impact of saccharides on the drying kinetics of agarose gels measured by in-situ interferometry. Sci Rep 7:41185

    Article  ADS  Google Scholar 

  • Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004) Slip and flow in pastes of soft particles: direct observation and rheology. J Rheol 48(6):1295–1320

    Article  ADS  Google Scholar 

  • Ng TSK, McKinley GH (2008) Power law gels at finite strains: the nonlinear rheology of gluten gels. SOR, J Rheol 52(2):417–449

    Article  ADS  Google Scholar 

  • Nicolas A, Ferrero EE, Martens K, Barrat JL (2017) Deformation and flow of amorphous solids: a review of mesoscale elastoplastic models. arXiv preprint arXiv:170809194

    Google Scholar 

  • Ohtsuka T, Royall CP, Tanaka H (2008) Local structure and dynamics in colloidal fluids and gels. EPL (Europhys Lett) 84(4):46002

    Article  ADS  Google Scholar 

  • Padmanabhan P, Zia R (2018) Gravitational collapse of colloidal gels: non-equilibrium phase separation driven by osmotic pressure. Soft Matter 14(17):3265–3287. https://doi.org/10.1039/c8sm00002f

    Article  ADS  Google Scholar 

  • Pantina JP, Furst EM (2005) Elasticity and critical bending moment of model colloidal aggregates. Phys Rev Lett 94(13):138301

    Article  ADS  Google Scholar 

  • Pantina JP, Furst EM (2006) Colloidal aggregate micromechanics in the presence of divalent ions. Langmuir 22(12):5282–5288

    Article  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short–range molecular dynamics. J Comput Phys 117:1–19

    Article  ADS  MATH  Google Scholar 

  • Puosi F, Rottler J, Barrat JL (2014) Time-dependent elastic response to a local shear transformation in amorphous solids. Phys Rev E 89(4):042302

    Article  ADS  Google Scholar 

  • Ramos L, Cipelletti L (2001) Ultraslow dynamics and stress relaxation in the aging of a soft glassy system. Phys Rev Lett 87(24):245503

    Article  ADS  Google Scholar 

  • Rovigatti L, Sciortino F (2011) Self and collective correlation functions in a gel of tetrahedral patchy particles. Mol Phys 109(23–24):2889–2896

    Article  ADS  Google Scholar 

  • Royall CP, Eggers J, Furukawa A, Tanaka H (2015) Probing colloidal gels at multiple length scales: the role of hydrodynamics. Phys Rev Lett 114:258302. https://doi.org/10.1103/PhysRevLett.114.258302

    Article  ADS  Google Scholar 

  • Ruta B, Chushkin Y, Monaco G, Cipelletti L, Pineda E, Bruna P, Giordano VM, Gonzalez-Silveira M (2012) Atomic-scale relaxation dynamics and aging in a metallic glass probed by x-ray photon correlation spectroscopy. Phys Rev Lett 109:165701

    Article  ADS  Google Scholar 

  • Ruta B, Czakkel O, Chushkin Y, Pignon F, Nervo R, Zontone F, Rinaudo M (2014) Silica nanoparticles as tracers of the gelation dynamics of a natural biopolymer physical gel. Soft Matter 10(25):4547–4554

    Article  ADS  Google Scholar 

  • Salerno KM, Maloney CE, Robbins MO (2012) Avalanches in strained amorphous solids: does inertia destroy critical behavior? Phys Rev Lett 109(10):105703

    Article  ADS  Google Scholar 

  • Segre P, Prasad V, Schofield A, Weitz D (2001) Glasslike kinetic arrest at the colloidal-gelation transition. Phys Rev Lett 86(26):6042

    Article  ADS  Google Scholar 

  • Tabatabai AP, Kaplan DL, Blair DL (2015) Rheology of reconstituted silk fibroin protein gels: the epitome of extreme mechanics. Soft Matter 11(4):756–761

    Article  ADS  Google Scholar 

  • Tanguy A, Wittmer J, Leonforte F, Barrat JL (2002) Continuum limit of amorphous elastic bodies: a finite-size study of low-frequency harmonic vibrations. Phys Rev B 66(17):174205

    Article  ADS  Google Scholar 

  • Thompson A, Plimpton S, Mattson W (2009) General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J Chem Phys 131:154107

    Article  ADS  Google Scholar 

  • Trappe V, Prasad V, Cipelletti L, Segre P, Weitz D (2001) Jamming phase diagram for attractive particles. Nature 411(6839):772

    Article  ADS  Google Scholar 

  • Tsurusawa H, Leocmach M, Russo J, Tanaka H (2018) Gelation as condensation frustrated by hydrodynamics and mechanical isostaticity. arXiv preprint arXiv:180404370

    Google Scholar 

  • van Doorn JM, Verweij JE, Sprakel J, van der Gucht J (2018) Strand plasticity governs fatigue in colloidal gels. Phys Rev Lett 120(20). https://doi.org/10.1103/PhysRevLett.120.208005

  • Van Oosten AS, Vahabi M, Licup AJ, Sharma A, Galie PA, MacKintosh FC, Janmey PA (2016) Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci Rep 6:19270

    Article  ADS  Google Scholar 

  • van der Kooij HM, Dussi S, van de Kerkhof GT, Frijns RAM, van der Gucht J, Sprakel J (2018) Laser speckle strain imaging reveals the origin of delayed fracture in a soft solid. Sci Adv 4(5). https://doi.org/10.1126/sciadv.aar1926, http://advances.sciencemag.org/content/4/5/eaar1926.full.pdf

    Article  ADS  Google Scholar 

  • Varga Z, Swan JW (2018) Normal modes of weak colloidal gels. Phys Rev E 97(1):012608

    Article  ADS  Google Scholar 

  • Varga Z, Wang G, Swan J (2015) The hydrodynamics of colloidal gelation. Soft Matter 11(46):9009–9019

    Article  ADS  Google Scholar 

  • Varrato F, Di Michele L, Belushkin M, Dorsaz N, Nathan SH, Eiser E, Foffi G (2012) Arrested demixing opens route to bigels. Proc Nat Acad Sci 109(47):19155–19160

    Article  ADS  Google Scholar 

  • Vasisht VV, Roberts G, Del Gado E (2018, in preparation) Shear start-up in jammed soft solids: a computational study

    Google Scholar 

  • Youssry M, Madec L, Soudan P, Cerbelaud M, Guyomard D, Lestriez B (2013) Non-aqueous carbon black suspensions for lithium-based redox flow batteries: rheology and simultaneous rheo-electrical behavior. Phys Chem Chem Phys 15(34):14476–14486

    Article  Google Scholar 

  • Zaccarelli E, Saika-Voivod I, Buldyrev SV, Moreno AJ, Tartaglia P, Sciortino F (2006) Gel to glass transition in simulation of a valence-limited colloidal system. J Chem Phys 124(12):124908

    Article  ADS  Google Scholar 

  • Zhang L, Rocklin DZ, Sander LM, Mao X (2017) Fiber networks below the isostatic point: fracture without stress concentration. Phys Rev Mater 1(5):052602

    Article  Google Scholar 

  • Zia RN, Landrum BJ, Russel WB (2014) A micro-mechanical study of coarsening and rheology of colloidal gels: cage building, cage hopping, and smoluchowski’s ratchet. J Rheol 58(5): 1121–1157

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Impact Program of the Georgetown Environmental Initiative and Georgetown University for funding and the Kavli Institute for Theoretical Physics at the University of California Santa Barbara for hospitality. This research was supported in part by the National Science Foundation under Grant No. NSF PHY17-48958. EDG thanks ESPCI Paris for hospitality and support through the Chair Joliot program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Bouzid .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bouzid, M., Gado, E.D. (2018). Mechanics of Soft Gels: Linear and Nonlinear Response. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_129-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_129-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Mechanics of Soft Gels: Linear and Nonlinear Response
    Published:
    25 January 2019

    DOI: https://doi.org/10.1007/978-3-319-50257-1_129-2

  2. Original

    Mechanics of Soft Gels: Linear and Nonlinear Response
    Published:
    13 July 2018

    DOI: https://doi.org/10.1007/978-3-319-50257-1_129-1