Skip to main content

Nanoscale Composition-Texture-Property-Relation in Calcium-Silicate-Hydrates

  • Living reference work entry
  • First Online:

Abstract

The more than 20 billion tons of concrete, produced every year, is responsible for 5–7% of global anthropogenic carbon dioxide emissions. Yet, there is no other viable material that can substitute concrete to meet the need for civil infrastructure in the developed and developing countries. This leaves reducing concrete’s carbon footprint as the only path forward to meet environmental targets. The strength and durability properties of concrete rely on the calcium-silicate-hydrate (CSH) phase that forms during cement hydration. Controlling the structure and properties of CSH phase is challenging, due to the intrinsic multiscale complexity of this hydration product that spans several orders of magnitude in length scale (from nanometers to microns). The existing lack in scientifically consistent insights into structure and properties of CSH has been the major obstacle to the development of greener formulations of modern concrete. In this chapter, we review how bridging general concepts from condense matter physics to cement and concrete research has revolutionized our contemporary understanding of the CSH phase and its making-up at the nanoscale, redefining this ubiquitous material described simultaneously as a spanning space continuous matrix and as a cohesive granular material that degrades and creeps over time.

This is a preview of subscription content, log in via an institution.

References

  • Abdolhosseini Qomi MJ, Ulm F-J, Pellenq RJ-M (2012) Evidence on the dual nature of aluminum in the calcium-silicate-hydrates based on atomistic simulations. J Am Ceram Soc 95(3):1128–1137

    Google Scholar 

  • Abdolhosseini Qomi MJ, Bauchy M, Ulm F-J, Pellenq RJ-M (2014a) Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates. J~Chem Phys 140(5):054515

    Article  ADS  Google Scholar 

  • Abdolhosseini Qomi MJ, Krakowiak KJ, Bauchy M, Stewart KL, Shahsavari R, Jagannathan D, Brommer DB, Baronnet A, Buehler MJ, Yip S, Ulm F-J, Van Vliet KJ, Pellenq RJ-M (2014b) Combinatorial molecular optimization of cement hydrates. Nat Commun 5:4960

    Article  ADS  Google Scholar 

  • Abdolhosseini Qomi MJ, Ulm F-J, Pellenq RJ-M (2015) Physical origins of thermal properties of cement paste. Phys Rev Appl 3(6):064010

    Article  ADS  Google Scholar 

  • Abdolhosseini Qomi MJ, Ebrahimi D, Bauchy M, Pellenq R, Ulm F-J (2017) Methodology for estimation of nanoscale hardness via atomistic simulations. J Nanomech Micromech 7(4):04017011

    Article  Google Scholar 

  • Allen AJ, Oberthur RC, Pearson D, Schofield P, Wilding CR (1987) Development of the fine porosity and gel structure of hydrating cement systems. Philos Mag B 56(3):263–288

    Article  ADS  Google Scholar 

  • Allen AJ, Thomas JJ, Jennings HM (2007) Composition and density of nanoscale calcium-silicate-hydrate in cement. Nat Mater 6(4):311–316

    Article  ADS  Google Scholar 

  • Attard P (1996) Electrolytes and the electric double layer. In: Prigogine I, Rice SA (eds) Advances in chemical physics. Wiley, New York, pp 1–159

    Google Scholar 

  • Ball P (2015) Material witness: concrete mixing for gorillas. Nat Mater 14(5):472–472

    Article  ADS  Google Scholar 

  • Bauchy M (2012) Topological constraints and rigidity of network glasses from molecular dynamics simulations. Am Ceram Soc Bull 91(4):34–38A

    Google Scholar 

  • Bauchy M (2014) Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential. J Chem Phys 141(2):024507

    Article  ADS  Google Scholar 

  • Bauchy M, Micoulaut M (2011) Atomic scale foundation of temperature-dependent bonding constraints in network glasses and liquids. J Non-Cryst Solids 357(14):2530–2537

    Article  ADS  Google Scholar 

  • Bauchy M, Micoulaut M, Celino M, Le Roux S, Boero M, Massobrio C (2011) Angular rigidity in tetrahedral network glasses with changing composition. Phys Rev B 84(5):054201

    Article  ADS  Google Scholar 

  • Bauchy M, Abdolhosseini Qomi MJ, Bichara C, Ulm F-J, Pellenq RJ-M (2014a) Nanoscale structure of cement: viewpoint of rigidity theory. J Phys Chem C 118(23):12485–12493

    Article  Google Scholar 

  • Bauchy M, Abdolhosseini Qomi MJ, Pellenq RJM, Ulm FJ (2014b) Is cement a glassy material? Comput Model Concr Struct 1:169

    Google Scholar 

  • Bauchy M, Abdolhosseini Qomi MJ, Ulm F-J, Pellenq RJ-M (2014c) Order and disorder in calcium-silicate-hydrate. J Chem Phys 140(21):214503

    Article  ADS  Google Scholar 

  • Bauchy M, Qomi MJA, Bichara C, Ulm F-J, Pellenq RJ-M (2015) Rigidity transition in materials: hardness is driven by weak atomic constraints. Phys Rev Lett 114(12):125502

    Article  ADS  Google Scholar 

  • Bauchy M, Wang B, Wang M, Yu Y, Abdolhosseini Qomi MJ, Smedskjaer MM, Bichara C, Ulm F-J, Pellenq R (2016) Fracture toughness anomalies: viewpoint of topological constraint theory. Acta Mater 121:234–239

    Article  Google Scholar 

  • Bauchy M, Wang M, Yu Y, Wang B, Krishnan NMA, Masoero E, Ulm F-J, Pellenq R (2017) Topological control on the structural relaxation of atomic networks under stress. Phys Rev Lett 119(3):035502

    Article  ADS  Google Scholar 

  • Bensted J, Barnes P (2002) Structure and performance of cements. Spon Press, London/New York

    Google Scholar 

  • Bernal JD (1954) The structures of cement hydration compounds. In: Proceedings of the 3rd international symposium on the chemistry of cement, pp 216–236

    Google Scholar 

  • Bonaccorsi E, Merlino S, Kampf AR (2005) The crystal structure of tobermorite 14 A (Plombierite), a C-S-H phase. J Am Ceram Soc 88(3):505–512

    Article  Google Scholar 

  • Bonnaud PA, Labbez C, Miura R, Suzuki A, Miyamoto N, Hatakeyama N, Miyamoto A, Vliet KJV (2016) Interaction grand potential between calcium-silicate-hydrate nanoparticles at the molecular level. Nanoscale 8(7):4160–4172

    Article  ADS  Google Scholar 

  • Boolchand P, Georgiev DG, Goodman B (2001) Discovery of the intermediate phase in chalcogenide glasses. J Optoelectron Adv Mater 3(3):703–720

    Google Scholar 

  • Bullard JW, Enjolras E, George WL, Satterfield SG, Terrill JE (2010) A parallel reaction-transport model applied to cement hydration and microstructure development. Model Simul Mater Sci Eng 18(2):025007

    Article  ADS  Google Scholar 

  • Carrier B (2013) Influence of water on the short-term and long-term mechanical properties of swelling clays: experiments on self-supporting films and molecular simulations. PhD thesis, Université Paris-Est

    Google Scholar 

  • Chien S-C, Auerbach SM, Monson PA (2015) Reactive ensemble Monte Carlo simulations of silica polymerization that yield zeolites and related crystalline microporous structures. J Phys Chem C 119(47):26628–26635

    Article  Google Scholar 

  • Churakov SV (2009) Structure of the interlayer in normal 11 Å tobermorite from an ab initio study. Eur J Mineral 21(1):261–271

    Article  Google Scholar 

  • Daimon M, Abo-El-Enein SA, Rosara G, Goto S, Kondo R (1977) Pore structure of calcium silicate hydrate in hydrated tricalcium silicate. J Am Ceram Soc 60(3–4):110–114

    Article  Google Scholar 

  • Dolado JS, Griebel M, Hamaekers J, Heber F (2011) The nano-branched structure of cementitious calcium-silicate-hydrate gel. J Mater Chem 21(12):4445–4449

    Article  Google Scholar 

  • Durgun E, Manzano H, Pellenq RJM, Grossman JC (2012) Understanding and controlling the reactivity of the calcium silicate phases from first principles. Chem Mater 24(7):1262–1267

    Article  Google Scholar 

  • Ebrahimi D, Pellenq RJ-M, Whittle AJ (2012) Nanoscale elastic properties of montmorillonite upon water adsorption. Langmuir 28(49):16855–16863

    Article  Google Scholar 

  • Ebrahimi D, Whittle AJ, Pellenq RJ-M (2014) Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets. J Chem Phys 140(15):154309

    Article  ADS  Google Scholar 

  • Feldman RF, Sereda PJ (1968) A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Mater Constr 1(6):509–520

    Article  Google Scholar 

  • Fratini E, Faraone A, Radi F, Chen SH, Baglioni (2013) Hydration water dynamics in tricalcium silicate pastes by time-resolved incoherent elastic neutron scattering. J Phys Chem C 117(14):7358–7364

    Article  Google Scholar 

  • Fonseca PC, Jennings HM (2010) The effect of drying on early-age morphology of C-S-H as observed in environmental SEM. Cem Concr Res 40(12):1673–1680

    Article  Google Scholar 

  • Garrault S, Finot E, Lesniewska E, Nonat A (2005) Study of C-S-H growth on C3S surface during its early hydration. Mater Struct 38(4):435–442

    Article  Google Scholar 

  • Garrault S, Behr T, Nonat A (2006) Formation of the C−S−H layer during early hydration of tricalcium silicate grains with different sizes. J Phys Chem B 110(1):270–275

    Article  Google Scholar 

  • Gartner EM (1997) A proposed mechanism for the growth of C-S-H during the hydration of tricalcium silicate. Cem Concr Res 27(5):665–672

    Article  Google Scholar 

  • Gartner E (2004) Industrially interesting approaches to ‘low-CO2’ cements. Cem Concr Res 34(9):1489–1498. H F W Taylor Commemorative Issue

    Article  Google Scholar 

  • Gartner E, Sui T (2017) Alternative cement clinkers. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2017.02.002

  • Gartner E, Maruyama I, Chen J (2017) A new model for the C-S-H phase formed during the hydration of Portland cements. Cem Concr Res 97:95–106

    Article  Google Scholar 

  • Geng G, Myers RJ, Qomi MJA, Monteiro PJM (2017) Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate. Sci Rep 7(1):10986

    Article  ADS  Google Scholar 

  • Gmira A, Zabat M, Pellenq RJ-M, Damme HV (2004) Microscopic physical basis of the poromechanical behavior of cement-based materials. Mater Struct 37(1):3–14

    Article  Google Scholar 

  • Huang J, Wang B, Valenzano L, Bauchy M, Sant G (2015) Electronic origin of doping-induced enhancements of reactivity: case study of tricalcium silicate. J Phys Chem C 119:25991

    Article  Google Scholar 

  • Ioannidou K, Pellenq RJ-M, Gado ED (2014) Controlling local packing and growth in calcium-silicate-hydrate gels. Soft Matter 10(8):1121–1133

    Article  ADS  Google Scholar 

  • Ioannidou K, Krakowiak KJ, Bauchy M, Hoover CG, Masoero E, Yip S, Ulm F-J, Levitz P, Pellenq RJ-M, Gado ED (2016) Mesoscale texture of cement hydrates. Proc Natl Acad Sci 113(8):2029–2034

    Article  ADS  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces, Revised 3rd edn. Academic, Cambridge, MA

    Google Scholar 

  • Jennings HM (2000) A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res 30(1):101–116

    Article  Google Scholar 

  • Jönsson B, Wennerström H, Nonat A, Cabane B (2004) Onset of cohesion in cement paste. Langmuir 20(16):6702–6709

    Article  Google Scholar 

  • Jönsson B, Nonat A, Labbez C, Cabane B, Wennerström H (2005) Controlling the cohesion of cement paste. Langmuir 21(20):9211–9221

    Article  Google Scholar 

  • Korb J-P, McDonald PJ, Monteilhet L, Kalinichev AG, Kirkpatrick RJ (2007a) Comparison of proton field-cycling relaxometry and molecular dynamics simulations for proton-water surface dynamics in cement-based materials. Cem Concr Res 37(3):348–350

    Article  Google Scholar 

  • Korb J-P, Monteilhet L, McDonald PJ, Mitchell J (2007b) Microstructure and texture of hydrated cement-based materials: a proton field cycling relaxometry approach. Cem Concr Res 37(3):295–302

    Article  Google Scholar 

  • Krishnan NMA, Wang B, Falzone G, Le Pape Y, Neithalath N, Pilon L, Bauchy M, Sant G (2016) Confined water in layered silicates: the origin of anomalous thermal expansion behavior in calcium-silicate-hydrates. ACS Appl Mater Interfaces 8(51):35621–35627

    Article  Google Scholar 

  • Krishnan NMA, Wang B, Sant G, Phillips JC, Bauchy M (2017) Revealing the effect of irradiation on cement hydrates: evidence of a topological self-organization. ACS Appl Mater Interfaces 9(37):32377–32385

    Article  Google Scholar 

  • Manzano H, Durgun E, Abdolhosseine Qomi MJ, Ulm F-J, Pellenq RJ, Grossman JC (2011) Impact of chemical impurities on the crystalline cement clinker phases determined by atomistic simulations. Cryst Growth Des 11(7):2964–2972

    Article  Google Scholar 

  • Manzano H, Masoero E, Lopez-Arbeloa I, Jennings HM (2013) Shear deformations in calcium silicate hydrates. Soft Matter 9(30):7333–7341

    Article  ADS  Google Scholar 

  • Manzano H, Durgun E, López-Arbeloa I, Grossman JC (2015) Insight on tricalcium silicate hydration and dissolution mechanism from molecular simulations. ACS Appl Mater Interfaces 7(27):14726–14733

    Article  Google Scholar 

  • Masoumi S, Valipour H, Abdolhosseini Qomi MJ (2017a) Intermolecular forces between nanolayers of crystalline calcium-silicate-hydrates in aqueous medium. J Phys Chem C 121(10):5565–5572

    Article  Google Scholar 

  • Masoumi S, Valipour H, Abdolhosseini Qomi MJ (2017b) Interparticle interactions in colloidal systems: towards a comprehensive mesoscale model. ACS Appl Mater Interfaces 9(32):27338–27349

    Article  Google Scholar 

  • Mauro JC (2011) Topological constraint theory of glass. Am Ceram Soc Bull 90(4):31–37

    Google Scholar 

  • Mauro JC, Ellison AJ, Pye LD (2013) Glass: the nanotechnology connection. Int J Appl Glas Sci 4(2):64–75

    Article  Google Scholar 

  • McDonald PJ, Rodin V, Valori A (2010) Characterisation of intra- and inter-C-S-H gel pore water in white cement based on an analysis of NMR signal amplitudes as a function of water content. Cem Concr Res 40(12):1656–1663

    Article  Google Scholar 

  • Meral C, Benmore CJ, Monteiro PJM (2011) The study of disorder and nanocrystallinity in C-S-H, supplementary cementitious materials and geopolymers using pair distribution function analysis. Cem Concr Res 41(7):696–710

    Article  Google Scholar 

  • Morshedifard A, Masoumi S, Qomi MJA (2018) Nanoscale origins of creep in calcium silicate hydrates. Nat Commun 9(1):1785

    Article  ADS  Google Scholar 

  • Muller ACA, Scrivener KL, Gajewicz AM, McDonald PJ (2013a) Densification of C-S-H measured by 1H NMR relaxometry. J Phys Chem C 117(1):403–412

    Article  Google Scholar 

  • Muller ACA, Scrivener KL, Gajewicz AM, McDonald PJ (2013b) Use of bench-top NMR to measure the density, composition and desorption isotherm of C-S-H in cement paste. Microporous Mesoporous Mater 178:99–103

    Article  Google Scholar 

  • Neubauer CM, Jennings HM (1996) The role of the environmental scanning electron microscope in the investigation of cement-based materials. Scanning 18(7):515–521

    Article  Google Scholar 

  • Nonat A (2004) The structure and stoichiometry of C-S-H. Cem Concr Res 34(9):1521–1528. H. F. W. Taylor Commemorative Issue

    Article  Google Scholar 

  • Pellenq RJ-M, Van Damme H (2004) Why does concrete set?: the nature of cohesion forces in hardened cement-based materials. MRS Bull 29(05):319–323

    Article  Google Scholar 

  • Pellenq RJ-M, Caillol JM, Delville A (1997) Electrostatic attraction between two charged surfaces: a (N,V,T) Monte Carlo simulation. J Phys Chem B 101(42):8584–8594

    Article  Google Scholar 

  • Pellenq RJ-M, Lequeux N, van Damme H (2008) Engineering the bonding scheme in C-S-H: the iono-covalent framework. Cem Concr Res 38(2):159–174. Special issue – The 12th International Congress on the Chemistry of Cement. Montreal, Canada, July 8–13 2007

    Article  Google Scholar 

  • Pellenq RJ-M, Kushima A, Shahsavari R, Vliet KJV, Buehler MJ, Yip S, Ulm F-J (2009) A realistic molecular model of cement hydrates. Proc Natl Acad Sci 106(38):16102–16107

    Article  ADS  Google Scholar 

  • Phillips JC (1979) Topology of covalent non-crystalline solids. 1. Short-range order in chalcogenide alloys. J Non-Cryst Solids 34(2):153–181

    Article  ADS  Google Scholar 

  • Pignatelli I, Kumar A, Alizadeh R, Pape YL, Bauchy M, Sant G (2016) A dissolution-precipitation mechanism is at the origin of concrete creep in moist environments. J Chem Phys 145(5):054701

    Article  ADS  Google Scholar 

  • Plassard C, Lesniewska E, Pochard I, Nonat A (2005) Nanoscale experimental investigation of particle interactions at the origin of the cohesion of cement. Langmuir 21(16):7263–7270

    Article  Google Scholar 

  • Pochard I, Labbez C, Nonat A, Vija H, Jönsson B (2010) The effect of polycations on early cement paste. Cem Concr Res 40(10):1488–1494

    Article  Google Scholar 

  • Popescu CD, Muntean M, Sharp JH (2003) Industrial trial production of low energy belite cement. Cem Concr Compos 25(7):689–693

    Article  Google Scholar 

  • Pustovgar E, Sangodkar RP, Andreev AS, Palacios M, Chmelka BF, Flatt RJ, d’Espinose de Lacaillerie J-B (2016) Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates. Nat Commun 7:10952

    Article  ADS  Google Scholar 

  • Qomi MJA, Bauchy M, Ulm F-J, Pellenq R (2015) Polymorphism and its implications on structure-property correlation in calcium-silicate-hydrates. In: Sobolev K, Shah SP (eds) Nanotechnology in construction. Springer International Publishing, Cham, pp 99–108

    Chapter  Google Scholar 

  • Quillin K (2001) Performance of belite-sulfoaluminate cements. Cem Concr Res 31(9):1341–1349

    Article  Google Scholar 

  • Rahimi-Aghdam S, Bažant ZP, Abdolhosseini Qomi MJ (2017) Cement hydration from hours to centuries controlled by diffusion through barrier shells of C-S-H. J Mech Phys Solids 99:211–224

    Article  ADS  Google Scholar 

  • Richardson IG (2000) The nature of the hydration products in hardened cement pastes. Cem Concr Compos 22(2):97–113

    Article  Google Scholar 

  • Richardson IG (2004) Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem Concr Res 34(9):1733–1777

    Article  Google Scholar 

  • Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38(2):137–158

    Article  Google Scholar 

  • Santos RL, Horta RB, Pereira J, Nunes TG, Rocha P, Canongia Lopes JN, Colaço R (2015) Microstructural control and hydration of novel micro-dendritic clinkers with CaO/SiO2=1.4. Cem Concr Res 76:212–221

    Article  Google Scholar 

  • Scrivener KL, Juilland P, Monteiro PJM (2015) Advances in understanding hydration of Portland cement. Cem Concr Res 78:38–56. Keynote papers from 14th International Congress on the Chemistry of Cement (ICCC 2015)

    Article  Google Scholar 

  • Shahsavari R, Pellenq RJ-M, Ulm F-J (2011) Empirical force fields for complex hydrated calcio-silicate layered materials. Phys Chem Chem Phys: PCCP 13(3):1002–1011

    Article  Google Scholar 

  • Skinner LB, Chae SR, Benmore CJ, Wenk HR, Monteiro PJM (2010) Nanostructure of calcium silicate hydrates in cements. Phys Rev Lett 104(19):195502

    Article  ADS  Google Scholar 

  • Smedskjaer MM, Mauro JC, Yue Y (2010) Prediction of glass hardness using temperature-dependent constraint theory. Phys Rev Lett 105(11):115503

    Article  ADS  Google Scholar 

  • Soyer-Uzun S, Chae SR, Benmore CJ, Wenk H-R, Monteiro PJM (2012) Compositional evolution of calcium silicate hydrate (C-S-H) structures by Total X-ray scattering. J Am Ceram Soc 95(2):793–798

    Article  Google Scholar 

  • Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314(1):141–151

    Article  ADS  Google Scholar 

  • Taylor HFW (1993) Nanostructure of C-S-H: current status. Adv Cem Based Mater 1(1):38–46

    Article  Google Scholar 

  • Taylor HFW (1997) Cement chemistry. T. Telford, London

    Book  Google Scholar 

  • Thomas JJ, Jennings HM (2006) A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste. Cem Concr Res 36(1):30–38

    Article  Google Scholar 

  • Thomas JJ, Biernacki JJ, Bullard JW, Bishnoi S, Dolado JS, Scherer GW, Luttge A (2011) Modeling and simulation of cement hydration kinetics and microstructure development. Cem Concr Res 41(12):1257–1278. Conferences Special: Cement Hydration Kinetics and Modeling, Quebec City, 2009 & CONMOD10, Lausanne, 2010

    Article  Google Scholar 

  • Varshneya AK, Mauro DJ (2007) Microhardness, indentation toughness, elasticity, plasticity, and brittleness of Ge-Sb-Se chalcogenide glasses. J Non-Cryst Solids 353(13–15):1291–1297

    Article  ADS  Google Scholar 

  • Zheng Q, Yue Y, Mauro JC (2017) Density of topological constraints as a metric for predicting glass hardness. Appl Phys Lett 111(1):011907

    Article  ADS  Google Scholar 

  • Zhou Y, Morshedifard A, Lee J, Abdolhosseini Qomi MJ (2017) The contribution of propagons and diffusons in heat transport through calcium-silicate-hydrates. Appl Phys Lett 110(4):043104

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was carried out with sponsorships provided by the A*MIDEX, the Aix-Marseille University Idex foundation, and the CSHub@MIT (thanks to the Portland Cement Association (PCA) and the Ready Mixed Concrete (RMC) Research & Education Foundation). Partial financial support was also provided by National Science Foundation under Grant No. 1562066, Award No. CMMI-1826122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Abdolhosseini Qomi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Qomi, M.J.A., Bauchy, M., Pellenq, R.J.M. (2018). Nanoscale Composition-Texture-Property-Relation in Calcium-Silicate-Hydrates. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_128-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_128-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics