Skip to main content

Mesoscale Structure and Mechanics of C-S-H

  • Living reference work entry
  • First Online:

Abstract

Cement is the most used building material on earth, yet its properties are inexactly understood and not fully controlled. Cement hydrates named C-S-H (Calcium-Silicate-Hydrate) are the most abundant phase in hydrated cement paste and are responsible for gluing all other hydration products and unreacted cement together. A source of complexity in modelling C-S-H is that the structure is amorphous, multiscale with fully interconnected porosity spanning from a few nm up to mm. The focus of this chapter is modeling approaches that allow connecting structure and mechanics of C-S-H at the mesoscale (the scale that spans from few nm up to the micron) from the early stages of hydration, the setting and up to the hardened cement paste. The modelling approach reviewed here is of reduced complexity based on coarse-graining with emphasis on the effective interactions between C-S-H particles. It addresses the mesoscale of C-S-H and has provided a unified framework for understanding the microstructure of C-S-H and reconciling data from many different experimental techniques. A consistent picture is presented covering (1) the reactive solidification of cement, (2) the origin of the observed microstructure of C-S-H, and (3) its link to mechanics. This provides a powerful predictive tool for nanoscale design of cement.

This is a preview of subscription content, log in via an institution.

References

  • Abuhaikal M, Ioannidou K, Petersen T, Pellenq RJM, Ulm FJ (2018) Le Châtelier’s conjecture: measurement of colloidal Eigenstresses in chemically reactive materials. J Mech Phys Solids 112:334–344

    Article  ADS  Google Scholar 

  • Allen AJ, Oberthur RC, Pearson D, Schofield P, Wilding CR (1987) Development of the fine porosity and gel structure of hydrating cement systems. Phil Mag B 56:263–268

    Article  ADS  Google Scholar 

  • Allen AJ, McLaughlin JC, Neumann DA, Livingston RA (2004) In situ quasi-elastic scattering characterization of particle size effects on the hydration of Tricalcium silicate. J Mater Res 19(11):3242–3254

    Article  ADS  Google Scholar 

  • Bernal JD (1954) The structures of cement hydration compounds. In: Proceedings of the 3rd international symposium on the chemistry of cements, pp 216–236

    Google Scholar 

  • Bonnaud PA, Labbez C, Miura R, Suzuki A, Miyamoto N, Hatakeyama N, Miyamoto A, Van Vliet KJ (2016) Interaction grand potential between calcium–silicate–hydrate nanoparticles at the molecular level. Nanoscale 8(7):4160–4172

    Article  ADS  Google Scholar 

  • Chemmi H, Petit D, Levitz P, Korb JP (2010) {NMR} control of aging and durability of hardened cement pastes. Comptes Rendus Chim 13(4):405–408

    Article  Google Scholar 

  • Chiang W, Fratini E, Baglioni P, Liu D, Chen S, Accepted J (2012) Microstructure determination of calcium- silicate-hydrate globules by small-angle neutron scattering. J Phys Chem 116(8):5055–5061

    Google Scholar 

  • Doi M (2013) Soft matter physics. Oxford University Press, Oxford

    Book  Google Scholar 

  • Ebrahimi D, Whittle AJ, Pellenq RJ-M (2014) Mesoscale properties of clay aggregates from potential of mean force representation of interactions between Nanoplatelets. J Chem Phys 140(15):154309

    Article  ADS  Google Scholar 

  • Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications; computational science. Elsevier Science, Burlington

    MATH  Google Scholar 

  • Ioannidou K, Pellenq RJ-M, Del Gado E (2014) Controlling local packing and growth in calcium-silicate-hydrate gels. Soft Matter 10:1121–1133

    Article  ADS  Google Scholar 

  • Ioannidou K, Kanduc M, Li L, Frenkel D, Dobnikar J, Del Gado E (2016a) The crucial effect of early-stage gelation on the mechanical properties of cement hydrates. Nat Commun 7:12106

    Article  ADS  Google Scholar 

  • Ioannidou K, Krakowiak KJ, Bauchy M, Hoover CG, Masoero E, Yip S, Ulm F-J, Levitz P, Pellenq RJ-M, Del Gado E (2016b) Mesoscale texture of cement hydrates. Proc Natl Acad Sci 113(8):2029–2034

    Article  ADS  Google Scholar 

  • Ioannidou K, Carrier B, Vandamme M, Pellenq R (2017a) The potential of mean force concept for bridging (length and time) scales in the modeling of complex porous materials. EPJ Web Conf 140:1009

    Article  Google Scholar 

  • Ioannidou K, Del Gado E, Ulm F-J, Pellenq RJ-M (2017b) Inhomogeneity in cement hydrates: linking local packing to local pressure. J Nanomech Micromech 7(2):4017003

    Article  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and surface forces, second edition: with applications to colloidal and biological systems (colloid science). Academic Press, Boston, MA

    Google Scholar 

  • Kjellander R, Marcelja S, Pashley RM, Quirk JP (1988) Double-layer ion correlation forces restrict calcium-clay swelling. J Phys Chem 92(23):6489–6492

    Article  Google Scholar 

  • Korb J-P, Monteilhet L, McDonald PJ, Mitchell J (2007) Microstructure and texture of hydrated cement-based materials: a proton field cycling Relaxometry approach. Cem Concr Res 37(3):295–302

    Article  Google Scholar 

  • Krakowiak KJ, Wilson W, James S, Musso S, Ulm F-J (2015) Inference of the phase-to-mechanical property link via coupled {X}-ray spectrometry and indentation analysis: application to cement-based materials. Cem Concr Res 67:271–285

    Article  Google Scholar 

  • Le Chatelier H (1887) Recherches expérimentales Sur La Constitution Des Mortiers Hydrauliques. Ann. des Mines, Huitième S, pp 345–465

    Google Scholar 

  • Lesko S, Lesniewska E, Nonat A, Mutin JC, Goudonnet JP (2001) Investigation by atomic force microscopy of forces at the origin of cement cohesion. Ultramicroscopy 86(1–2):11–21

    Article  Google Scholar 

  • Levitz P, Korb JP, Petit D (2003) Slow dynamics of embedded fluid in mesoscopic confining systems as probed by NMR Relaxometry. Eur Phys J E 12(1):29–33

    Article  Google Scholar 

  • Lootens D, Hébraud P, Lécolier E, Van Damme H (2004) Gelation, shear-thinning and shear-thickening in cement slurries. Sci Technol 59(1):31–40

    Google Scholar 

  • Masoero E, Gado E, Del; Pellenq RJ, Ulm F, Yip S (2012) Nano-structure and -mechanics of cement : polydisperse colloidal packing. Phys Rev Lett 109(15):3–6

    Article  Google Scholar 

  • Masoumi S, Valipour H, Abdolhosseini Qomi MJ (2017) Intermolecular forces between Nanolayers of crystalline calcium-silicate-hydrates in aqueous medium. J Phys Chem C 121(10):5565–5572

    Article  Google Scholar 

  • Michaelis W (1893) Uber Den Portland Cement. J fur Prakt Chemie Chem Zeitung 17:982–986

    Google Scholar 

  • Nachbaur L, Mutin JC, Nonat A, Choplin L (2001) Dynamic mode rheology of cement and Tricalcium silicate pastes from mixing to setting. Cem Con Res 31(2):183–192

    Article  Google Scholar 

  • Pellenq RJM, Van Damme H (2004) Why does concrete set?: the nature of cohesion forces in hardened cement-based materials. MRS Bull 29(5):319–323

    Article  Google Scholar 

  • Pellenq RJM, Caillol JM, Delville A (1997) Electrostatic attraction between two charged surfaces: a (N,V,T) Monte Carlo simulation. J Phys Chem B 101(42):8584–8594

    Article  Google Scholar 

  • Pellenq RJ-M, Kushima A, Shahsavari R, Van Vliet KJ, Buehler MJ, Yip S, Ulm F-J (2009) A realistic molecular model of cement hydrates. Proc Natl Acad Sci USA 106(38):16102–16107

    Article  ADS  Google Scholar 

  • Plassard C, Lesniewska E, Pochard I, Nonat A (2005) Nanoscale experimental investigation of particle interactions at the origin of the cohesion of cement. Langmuir 21(16):7263–7270

    Article  Google Scholar 

  • Powers TC (1958) Structure and physical properties of hardened Portland cement paste. J Am Ceram Soc 41(1):1–6

    Article  Google Scholar 

  • Taylor H (1997) Cement chemistry. Thomas Telford Publishing, London

    Book  Google Scholar 

  • Thomas JJ, Jennings HM (2006) A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste. Cem Con Res 36(1):30–38

    Article  Google Scholar 

  • Valleau JP, Ivkov R, Torrie GM (1991) Colloid stability: the forces between charged surfaces in an electrolyte. J Chem Phys 95(1):520–532

    Article  ADS  Google Scholar 

  • Vandamme M, Ulm F-J (2009) Nanogranular origin of concrete creep. Proc Natl Acad Sci 106(26):10552–10557

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Ioannidou .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ioannidou, K. (2018). Mesoscale Structure and Mechanics of C-S-H. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_127-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_127-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics