Skip to main content

Molecular Dynamics Simulations of Non-equilibrium Systems

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

The materials in nuclear reactors are subject to several radiation damage mechanisms. High-energy neutrons can give high (keV) recoil energies to nuclei via elastic collisions, many different nuclear reactions can also lead to lower recoil energies to nuclei, and nuclear fission fragments can get MeV kinetic energies from the fission process. The nuclei with high kinetic energies can damage the material both via nuclear and electronic excitations. In this chapter, we first overview briefly the nuclear damage mechanisms and then discuss how molecular dynamics methods can be used to model the ensuing damage, both in the nuclear and electronic collision regimes. Some examples of recent results from both the nuclear and electronic regime are provided in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abell GC (1985) Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys Rev B 31:6184

    Article  ADS  Google Scholar 

  • Afra B, Rodriguez MD, Trautmann C, Pakarinen OH, Djurabekova F, Nordlund K, Bierschenk T, Giulian R, Ridgway MC, Rizza G, Kirby N, Toulemonde M, Kluth P (2013) Saxs investigations of the morphology of swift heavy ion tracks in α-quartz. J Phys Condens Matter 25:0455006

    Article  Google Scholar 

  • Aichoune N, Potin V, Ruterana P, Hairie A, Nouet G, Paumier E (2000) An empirical potential for the calculation of the atomic structure of extended defects in wurtzite GaN. Comput Mater Sci 17:380

    Article  Google Scholar 

  • Alavi A, Alvarez LJ, Elliott R, MacDonald IR (1992) Charge-transfer molecular dynamics. Philos Mag B 65:489

    Article  ADS  Google Scholar 

  • Albe K, Nordlund K, Averback RS (2002) Modeling metal-semiconductor interaction: analytical bond-order potential for platinum-carbon. Phys Rev B 65:195124

    Article  ADS  Google Scholar 

  • Albe K, Nord J, Nordlund K (2009) Dynamic charge-transfer bond-order potential for gallium nitride. Philos Mag A 89:3477–3497

    Article  ADS  Google Scholar 

  • Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Apel P (2003) Swift ion effects in polymers: industrial applications. Nucl Instr Methods Phys Res B 208:11

    Article  ADS  Google Scholar 

  • Ashu PA, Jefferson JH, Cullis AG, Hagston WE, Whitehouse CR (1995) Molecular dynamics simulation of (100) InGaAs/GaAs strained-layer relaxation processes. J Cryst Growth 150: 176–179

    Article  ADS  Google Scholar 

  • Averback RS, Diaz de la Rubia T (1998) Displacement damage in irradiated metals and semiconductors. In: Ehrenfest H, Spaepen F (eds) Solid state physics, vol 51. Academic, New York, pp 281–402

    Google Scholar 

  • Balamane H, Halicioglu T, Tiller WA (1992) Comparative study of silicon empirical interatomic potentials. Phys Rev B 46(4):2250

    Article  ADS  Google Scholar 

  • Belko V, Posselt M, Chagarov E (2002) Improvement of the repulsive part of the classical interatomic potential for SiC. Nucl Instrum Methods Phys Res B 202:18–23

    Article  ADS  Google Scholar 

  • Bench MW, Robertson IM, Kirk MA, Jenčič I (2000) Production of amorphous zones in GaAs by the direct impact of energetic heavy ions. J Appl Phys 87(1):49–56

    Article  ADS  Google Scholar 

  • Billeter SR, Curioni A, Fischer D, Andreoni W (2007) Ab initio derived augmented Tersoff potential for silicon oxynitride compounds and their interfaces with silicon. Phys Rev B 73:155329

    Article  ADS  Google Scholar 

  • Björkas C, Nordlund K (2009) Assessment of the relation between ion beam mixing, electron-phonon coupling, and damage production in Fe. Nucl Instrum Methods Phys Res B 267: 1830–1836

    Article  ADS  Google Scholar 

  • Brenner D (1989) Relationship between the embedded-atom method and Tersoff potentials. Phys Rev Lett 63:1022

    Article  ADS  Google Scholar 

  • Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42(15):9458

    Article  ADS  Google Scholar 

  • Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783

    Article  ADS  Google Scholar 

  • Bringa EM (2003) Molecular dynamics simulations of Coulomb explosion. Nucl Instrum Methods Phys Res B 209:1–9

    Article  ADS  Google Scholar 

  • Bringa EM, Johnson RE (2002) Coulomb explosion and thermal spikes. Phys Rev Lett 88(16):165501

    Article  ADS  Google Scholar 

  • Bringa EM, Johnson RE, Papaleo RM (2002) Crater formation by single ions in the electronic stopping regime: comparison of molecular dynamics simulations and experiments on organic films. Phys Rev B 65:094113

    Article  ADS  Google Scholar 

  • Cai D, Snell CM, Beardmore KM, Grønbech-Jensen N (1998) Simulation of phosphorus implantation into silicon with a single parameter electronic stopping power model. Int J Mod Phys C 9(3):459

    Article  ADS  Google Scholar 

  • Caturla MJ, Diaz de la Rubia T, Marques LA, Gilmer GH (1996) Ion-beam processing of silicon at keV energies: a molecular-dynamics study. Phys Rev B 54(24):16683

    Article  ADS  Google Scholar 

  • Chason E, Picraux ST, Poate M, Borland JO, Current MI, Diaz de la Rubia T, Eaglesham DJ, Holland OW, Law ME, Magee CW, Mayer JW, Melngailis J, Tasch AF (1997) Ion beams in silicon processing and characterization. J Appl Phys 81(10):6513–6561

    Article  ADS  Google Scholar 

  • Cherednikov Y, Sun S, Urbassek H (2013a) Hybrid paricle-in-cell/molecular dynamics simulation of swift heavy ion tracks in lif. Phys Rev B 87(24):245424

    Article  ADS  Google Scholar 

  • Cherednikov Y, Sun S, Urbassek H (2013b) Sputtering from swift-ion trails in lif: a hybrid pic/md simulation. Nucl Instrum Methods Phys Res B 315:313–317

    Article  ADS  Google Scholar 

  • Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B 48(1):22

    Article  ADS  Google Scholar 

  • Correa AA, Kohanoff J, Artacho E, Sanchez-Portal D, Caro A (2012) Nonadiabatic forces in ion-solid interactions: the initial stages of radiation damage. Phys Rev Lett 108(21):213201

    Article  ADS  Google Scholar 

  • Current MI, Wei CY, Seidman DN (1983) Direct observation of the primary state of damage of ion-irradiated tungsten II. Definitions, analyses and results. Philos Mag A 47(3):407

    Article  ADS  Google Scholar 

  • Daraszewicz S, Giret Y, Tanimura H, Duffy D, Shluger A, Tanimura K (2014) Determination of the electron-phonon coupling constant in tungsten. Appl Phys Lett 105:023112. http://scitation.aip.org/content/aip/journal/apl/105/2/10.1063/1.4890413

    Article  ADS  Google Scholar 

  • Daw MS, Foiles SM, Baskes MI (1993) The embedded-atom method: a review of theory and applications. Mat Sci Rep 9:251

    Article  Google Scholar 

  • Debelle A, Backman M, Thomé L, Weber WJ, Toulemonde M, Mylonas S, Boulle A, Pakarinen OH, Juslin N, Djurabekova F, Nordlund K, Garrido F (2012) Combined experimental and computational study of the recrystallization process induced by electronic interactions of swift heavy ions with silicon carbide crystals. Phys Rev B 86:100102(R). https://doi.org/10.1103/PhysRevB.86.100102

  • Debelle A, Backman M, Thome L, Nordlund K, Djurabekova F, Weber WJ, Monnet I, Pakarinen OH, Garrido F, Paumier F (2014) Swift heavy ion induced recrystallization in cubic silicon carbide: new insights from designed experiments and md simulations. Nucl Instrum Methods Phys Res B 326:326–331. https://doi.org/10.1016/j.nimb.2013.10.080

    Article  ADS  Google Scholar 

  • de Brito Mota, Justo JF, Fazzo A (1998) Structural properties of amorphous silicon nitride. Phys Rev B 58:8323

    Google Scholar 

  • Djurabekova F, Samela J, Timko H, Nordlund K, Calatroni S, Taborelli M, Wuensch W (2012) Crater formation by single ions, cluster ions and ion “showers”. Nucl Instrum Methods Phys Res B 272:374–376. https://doi.org/10.1016/j.nimb.2011.01.104

    Article  ADS  Google Scholar 

  • Duffy DM, Rutherford AM (2007) Including the effects of electronic stopping and electron-ion interactions in radiation damage simulations. J Phys Condens Matter 19:016207

    Article  ADS  Google Scholar 

  • Duffy DM, Daraszewicz S, Mulroue J (2012) Modelling the effects of electronic excitations in ionic-covalent materials. Nucl Instrum Methods Phys Res B 277:21–27

    Article  ADS  Google Scholar 

  • Duvenbeck A, Weingart O, Buss V, Wucher A (2007) Electron promotion and electronic friction in atomic collision cascades. New J Phys 9:38

    Article  Google Scholar 

  • Feuston BP, Garofalini SH (1988) Empirical three-body potential for vitreous silica. J Chem Phys 89(9):5818

    Article  ADS  Google Scholar 

  • Finnis MW, Sinclair JE (1984) A simple empirical N-body potential for transition metals. Philos Mag A 50(1):45. See also Erratum, ibid. 53:161 (1986)

    Article  ADS  Google Scholar 

  • Finnis MW, Agnew P, Foreman AJE (1991) Thermal excitation of electrons in energetic displacement cascades. Phys Rev B 44(2):44

    Article  Google Scholar 

  • Fleetwood D, Kosier S, Nowlin R, Schrimpf R, Reber R, Delaus M, Winokur P, Wei A, Combs W, Pease R (1994) Physical-mechanisms contributing to enhanced bipolar gain degradation at low-dose rates. IEEE Trans Nucl Sci 41(6):1871–1883. 1994 IEEE annual conference on nuclear and space radiation effects (NSREC 94), Tucson, 18–22 July 1994

    Article  ADS  Google Scholar 

  • Fleischer R, Price P, Walker RM (1965) Ion explosion spike mechanism for formation of charged particle tracks in solids. J Appl Phys 36:3645

    Article  ADS  Google Scholar 

  • Fleischer RL, Walker RM, Price PB, Hubbard EL (1967) Criterion for registration in dielectric track detectors. Phys Rev 156:353

    Article  ADS  Google Scholar 

  • Fleischer RL, Price PB, Walker RM (1975) Nuclear tracks in solids. University of California, Berkeley

    Google Scholar 

  • Flynn CP, Averback RS (1988) Electron-phonon interactions in energetic displacement cascades. Phys Rev B 38:7118

    Article  ADS  Google Scholar 

  • Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983. Erratum: ibid, Phys Rev B 37:10378 (1988)

    Google Scholar 

  • Fujimoto JG, Liu JM, Ippen EP, Bloembergen N (1984) Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures. Phys Rev Lett 53: 1837–1840

    Article  ADS  Google Scholar 

  • Gallagher K, Brown R, Johnson C (1998) Fission track analysis and its applications to geological problems. Annu Rev Earth Planet Sci 26:519–572

    Article  ADS  Google Scholar 

  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Seitsonen GSAP, Smogunov A, Umari P, Wentzcovitch RM (2009) Quantum espresso: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502-1–395502-19

    Google Scholar 

  • Gorbunov SA, Medvedev NA, Rymzhanov R, Terekhind PN, Volkov AE (2014) Excitation and relaxation of olivine after swift heavy ion impact. Nucl Instrum Methods Phys Res B 326: 163–168

    Article  ADS  Google Scholar 

  • Holmström E, Krasheninnikov AV, Nordlund K (2010) Quantum and classical molecular dynamics studies of the threshold displacement energy in Si bulk and nanowire. In: Ila D, Lindner JKN, Chu PK, Baglin J, Kishimoto N (eds) Ion beams and nano-engineering, MRS symposium proceedings, vol 1181, MRS, Warrendale, pp 111–122

    Google Scholar 

  • Hooda S, Avkhachev K, Khan S, Djurabekova F, Nordlund K, Satpati B, Bernstorff S, Ahlawat S, Kanjilal D, Kabiraj D (2017) Mechanistic details of the formation and growth of nanoscale voids in Ge under extreme conditions within an ion track. J Phys D: Appl Phys 50:225302

    Article  ADS  Google Scholar 

  • Hou Q, Hou M, Bardotti L, Prevel B, Melinon P, Perez A (2000) Deposition of AuN clusters on Au(111) surfaces. I. Atomic-scale modeling. Phys Rev B 62(4):2825–2834

    Google Scholar 

  • Humbird D, Graves DB (2004) Molecular dynamics simulations of Si-F surface chemistry with improved interatomic potentials. Plasma Sources Sci Technol 13(3):548

    Article  ADS  Google Scholar 

  • Ichimura M (1996) Stillinger-Weber potentials for III–V compound semiconductors and their application to the critical thickness calculation for InAs/GaAs. Physica Status Solidi A 153(2):431–437

    Article  ADS  Google Scholar 

  • Itoh N, Stoneham A (1998) Excitonic model of track registration of energetic heavy ions in insulators. Nucl Instrum Methods Phys Res B 146:362–366

    Article  ADS  Google Scholar 

  • Itoh N, Duffy D, Khakshouri S, Stoneham A (2009) Making tracks: electronic excitation roles in forming swift heavy ion tracks. J Phys: Condens Matter 21:474205.https://doi.org/10.1088/0953-8984/21/47/474205

    ADS  Google Scholar 

  • Ivanov DS, Zhigilei LV (2003) Combined atomistic-continuum modeling of short pulse laser melting and disintegration of metal films. Phys Rev B 68:064114

    Article  ADS  Google Scholar 

  • Jiang W, Devanathan R, Sundgren C, Ishimaru M, Sato K, Varga T, Manandhar S, Benyagoub A (2013) Ion tracks and microstructures in barium titanate irradiated with swift heavy ions: a combined experimental and computational study. Acta Materialia 61:7904–7916

    Article  Google Scholar 

  • Johannsen JC, Ulstrup S, Cilento F, Crepaldi A, Zacchigna M, Cacho C, Turcu ICE, Springate E, Fromm F, Raidel C, Seyller T, Parmigiani F, Grioni M, Hofmann P (2013) Direct view of hot carrier dynamics in graphene. Phys Rev Lett 111:027403

    Article  ADS  Google Scholar 

  • Juslin N, Erhart P, Träskelin P, Nord J, Henriksson KOE, Nordlund K, Salonen E, Albe K (2005) Analytical interatomic potential for modelling non-equilibrium processes in the W-C-H system. J Appl Phys 98:123520

    Article  ADS  Google Scholar 

  • Kaganov MI, Lifshitz IM, Tanatarov LV (1957) Relaxation between electrons and crystalline lattice. Sov Phys JETP 4(2):173

    MATH  Google Scholar 

  • Kamarou A, Wesch W, Wendler E, Undisz A, Rettenmayr M (2008) Radiation damage formation in inp, insb, gaas, gap, ge, and si due to fast ions. Phys Rev B 78:054111

    Article  ADS  Google Scholar 

  • Khalfaoui N, Rotaru CC, Bouffard S, Toulemonde M, Stoquert JP, Haas F, Trautmann C, Jensen J, Dunlop A (2005) Characterization of swift heavy ion tracks in caf2 by scanning force and transmission electron microscopy. Nucl Instrum Methods Phys Res B 240(4):819–828. https://doi.org/10.1016/j.nimb.2005.06.220

    Article  ADS  Google Scholar 

  • Klaumünzer S (2004) Ion tracks in quartz and vitreous silica. Nucl Instrum Methods Phys Res B 225:136

    Article  ADS  Google Scholar 

  • Klaumünzer S, dong Hou M, Schumacher G (1986) Coulomb explosions in a metallic glass due to the passage of fast heavy ions? Phys Rev Lett 57:850–853

    Article  ADS  Google Scholar 

  • Kluth P, Schnohr CS, Pakarinen OH, Djurabekova F, Sprouster DJ, Giulian R, Ridgway MC, Byrne AP, Trautmann C, Cookson DJ, Nordlund K, Toulemonde M (2008) Fine structure in swift heavy ion tracks in amorphous SiO2. Phys Rev Lett 101:175503

    Article  ADS  Google Scholar 

  • Koponen I (1992) Atomic mixing in ion-bombardment-induced temperature spikes in metals. J Appl Phys 72(3):1194

    Article  ADS  Google Scholar 

  • Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nanostructured materials. J Appl Phys (Appl Phys Rev) 107:071301

    Article  ADS  Google Scholar 

  • Kucheyev SO, Williams JS, Jagadish C, Zou J, Li G, Titov AI (2001) Effect of ion species on the accumulation of ion-beam damage in GaN. Phys Rev B 64:035202

    Article  ADS  Google Scholar 

  • Pauling L (1939) The nature of the chemical bond. Cornell University Press, Ithaca

    MATH  Google Scholar 

  • Lan CH, Xue JM, Wang YG, Zhang YW (2013) Molecular dynamics simulation of latent track formation in α-quartz. Chin Phys C 37:783

    Google Scholar 

  • Lang M, Lian J, Zhang F, Hendriks BW, Trautmann C, Neumann R, Ewing RC (2008) Fission tracks simulated by swift heavy ions at crustal pressures and temperatures. Earth Planet Sci Lett 274:355

    Article  ADS  Google Scholar 

  • Lang M, Devanathan R, Toulemonde M, Trautmann C (2015) Advances in understanding of swift heavy-ion tracks in complex ceramics. Curr Opin Solid State Mater Sci 19:39–48

    Article  ADS  Google Scholar 

  • Leach AR (2001) Molecular modelling: principles and applications, 2nd edn. Pearson Education, Harlow

    Google Scholar 

  • Leino AA, Daraszewicz SL, Pakarinen OH, Nordlund K, Djurabekova F (2015) Atomistic two-temperature modelling of ion track formation in silicon dioxide. EPL 110(1):16004. http://stacks.iop.org/0295-5075/110/i=1/a=16004

    Article  ADS  Google Scholar 

  • Lifshits IM, Kaganov MI, Tanatarov LV (1960) On the theory of radiation-induced changes in metals. J Nucl Energy Part A: React Sci 12:69

    Google Scholar 

  • Manninen M (1986) Interatomic interactions in solids: an effective-medium approach. Phys Rev B 34(12):8486

    Article  ADS  Google Scholar 

  • Marian J, Zepeda-Ruiz LA, Couto N, Bringa EM, Gilmer GH, Stangeby PC, Rognlien TD (2007) X. J Appl Phys 101:044506

    Article  ADS  Google Scholar 

  • Matsunaga K, Fisher C, Matsubara H (2000) Tersoff potential parameters for simulating cubic boron carbonitrides. Jpn J Appl Phys 39:L48–L51

    Article  ADS  Google Scholar 

  • Medvedev N, Volkov A, Shcheblanov N, Rethfeld B (2010) Early stage of the electron kinetics in swift heavy ion tracks in dielectrics. Phys Rev B 82:125425

    Article  ADS  Google Scholar 

  • Medvedev N, Rymzhanov R, Volkov A (2015a) Time resolved electron kinetics in swift heavy ion irradiated solids. J Appl Phys D – Appl Phys 48:355303

    Article  Google Scholar 

  • Medvedev N, Volkov A, Ziaja B (2015b) Electronic and atomic kinetics in solids irradiated with free-electron lasers or swift-heavy ions. Nucl Instrum Methods Phys Res B 365:437–446

    Article  ADS  Google Scholar 

  • Meftah A, Brisard F, Costantini JM, Dooryhee E, Hage-Ali M, Hervieu M, Stoquert JP, Studer F, Toulemonde M (1994) Track formation in SiO2 quartz and the thermal-spike mechanism. Phys Rev B 49:12457–12463

    Article  ADS  Google Scholar 

  • Meldrum A, Zinkle SJ, Boatner LA, Ewing RC (1998) A transient liquid-like phase in the displacement cascades in zircon, hafnon and thorite. Nature 395:56–58

    Article  ADS  Google Scholar 

  • Miyagawa Y, Nakadate H, Djurabekova F, Nakao S, Miyagawa S (2002) Dynamic-sasamal: simulation software for high dose ion implantation. Surf&Coat Tech 158–159:87

    Google Scholar 

  • Mookerjee S, Beuve M, Khan SA, Toulemonde M, Roy A (2008) Sensitivity of ion-induced sputtering to the radial distribution of energy transfers: a molecular dynamics study. Phys Rev B 78:045435

    Article  ADS  Google Scholar 

  • Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for Si-O systems using Tersoff parameterization. Comput Mater Sci 39(2):334–339

    Article  Google Scholar 

  • Lima NW, Gutierres LI, Gonzalez RI, Müller S, Thomaz RS, Bringa EM, Papaléo RM (2016) Molecular dynamics simulation of polymerlike thin films irradiated by fast ions: a comparison between fene and lennard-jones potentials. Phys Rev B 94:195417

    Article  ADS  Google Scholar 

  • Ni B, Lee KH, Sinnott SB (2004) A reactive empirical bond order (REBO) potential for hydrocarbon oxygen interactions. J Phys: Condens Matter 16:7261–7275

    ADS  Google Scholar 

  • Nordlund K (1995) Molecular dynamics simulation of ion ranges in the 1–100 keV energy range. Comput Mater Sci 3:448

    Article  Google Scholar 

  • Nordlund K, Keinonen J, Kuronen A (1994) Effect of the interatomic Si-Si-potential on vacancy production during ion implantation of Si. Physica Scripta T54:34

    Article  ADS  Google Scholar 

  • Nordlund K, Keinonen J, Mattila T (1996) Formation of ion irradiation-induced small-scale defects on graphite surfaces. Phys Rev Lett 77(4):699

    Article  ADS  Google Scholar 

  • Nordlund K, Runeberg N, Sundholm D (1997) Repulsive interatomic potentials calculated using Hartree-Fock and density-functional theory methods. Nucl Instrum Methods Phys Res B 132:45–54

    Article  ADS  Google Scholar 

  • Nordlund K, Ghaly M, Averback RS, Caturla M, Diaz de la Rubia T, Tarus J (1998) Defect production in collision cascades in elemental semiconductors and FCC metals. Phys Rev B 57(13):7556–7570

    Article  ADS  Google Scholar 

  • Nordlund K, Wallenius J, Malerba L (2005) Molecular dynamics simulations of threshold energies in Fe. Nucl Instrum Methods Phys Res B 246(2):322–332

    Article  ADS  Google Scholar 

  • Ohta H, Hamaguchi S (2001) Classical interatomic potentials for Si-O-F and Si-O-Cl systems. J Chem Phys 115(14):6679–90

    Article  ADS  Google Scholar 

  • Ojanperä A, Krasheninnikov AV, Puska M (2014) Electronic stopping power from first-principles calculations with account for core electron excitations and projectile ionization. Phys Rev B 89:035120

    Article  ADS  Google Scholar 

  • Oligschleger C, Jones RO, Reimann SM, Schober HR (1996) Model interatomic potential for simulations in selenium. Phys Rev B 53:6165

    Article  ADS  Google Scholar 

  • Pailthorpe B, Mahon P (1990) Molecular dynamics simulation of thin film diamond. Thin Solid Films 193/194:34

    Article  ADS  Google Scholar 

  • Pakarinen OH, Djurabekova F, Nordlund K, Kluth P, Ridgway M (2009) Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2. Nucl Instrum Methods Phys Res B 267:1456–1459

    Article  ADS  Google Scholar 

  • Pakarinen OH, Djurabekova F, Nordlund K (2010) Density evolution in formation of swift heavy ion tracks in insulators. Nucl Instrum Methods Phys Res B 268:3163

    Article  ADS  Google Scholar 

  • Peltola J, Nordlund K, Keinonen J (2006) Electronic stopping power calculation method for molecular dynamics simulations using local Firsov and free electron-gas models. Radiat Eff Defects Solids 161(9):511–521

    Article  ADS  Google Scholar 

  • Polvi J, Luukkonen P, Nordlund K, Järvi TT, Kemper TW, Sinnott SB (2012) Primary radiation defect production in polyethylene and cellulose. J Phys Chem B 116(47):13932

    Article  Google Scholar 

  • Powell D, Migliorato MA, Cullis AG (2007) Optimized Tersoff potential parameters for tetrahedrally bonded III–V semiconductors. Phys Rev B 75(11):115202

    Article  ADS  Google Scholar 

  • Pronnecke S, Caro A, Victoria M, Diaz de la Rubia T, Guinan MW (1991) The effect of electronic energy loss on the dynamics of thermal spikes in Cu . J Mater Res 6(3):483–91

    Article  ADS  Google Scholar 

  • Pruneda JM, Sánchez-Portal D, Arnau A, Juaristi JI, Artacho E (2007) Electronic stopping power in LiF from first principles. Phys Rev Lett 99:235501.https://doi.org/10.1103/PhysRevLett.99.235501

    Article  ADS  Google Scholar 

  • Pugacheva TS, Djurabekova FG, Valiev SK (1998) Effects of cascade mixing, sputtering and diffusion by high dose light ion irradiation of boron nitride. Nucl Instrum Methods Phys Res B 141:99–104

    Article  ADS  Google Scholar 

  • Puska MJ, Nieminen RM, Manninen M (1981) Atoms embedded in an electron gas: immersion energies. Phys Rev B 24(6):3037

    Article  ADS  Google Scholar 

  • Raman S, Jurney ET, Warner JW, Kuronen A, Keinonen J, Nordlund K, Millener DJ (1994) Lifetimes in 15N from gamma-ray lineshapes produced in the 2H(14N,) and 14N(thermal n, γ) reactions. Phys Rev C 50(2):682

    Article  ADS  Google Scholar 

  • Rethfeld B (2004) Unified model for the free-electron avalanche in laser-irradiated dielectrics. Phys Rev Lett 92(18):187401

    Article  ADS  Google Scholar 

  • Rethfeld B, Rämer A, Brouwer N, Medvedev N, Osmani O (2014) Electron dynamics and energy dissipation in highly excited dielectrics. Nucl Instrum Methods Phys Res B 327:78–88

    Article  ADS  Google Scholar 

  • Ridgway M, Bierschenk T, Giulian R, Afra B, Rodriguez MD, Araujo L, Byrne AP, Kirby N, Pakarinen OH, Djurabekova F, Nordlund K, Schleberger M, Osmani O, Medvedev N, Rethfeld B, Wesch W, Kluth P (2013) Track and voids in amorphous Ge induced by swift heavy-ion irradiation. Phys Rev Lett 110:245502

    Article  ADS  Google Scholar 

  • Rivera A, Olivares J, Prada A, Crespillo ML, Caturla MJ, Bringa EM, Perlado JM, Pena-Rodriquez O (2017) Permanent modifications in silica produced by ion-induced high electronic excitation: experiments and atomistic simulations. Sci Rep 7:10641

    Article  ADS  Google Scholar 

  • Ruault MO, Chaumont J, Penisson JM, Bourret A (1984) High resolution and in situ investigation of defects in Bi-irradiated Si. Philos Mag A 50(5):667

    Article  ADS  Google Scholar 

  • Rymzhanov RA, Medvedev NA, Volkov AE (2016) Effects of model approximations of electron, hole, and photon transport in swift heavy ion tracks. Nucl Instrum Methods Phys Res 388:41–52

    Article  ADS  Google Scholar 

  • Salonen E, Nordlund K, Keinonen J, Wu CH (2001) Swift chemical sputtering of amorphous hydrogenated carbon. Phys Rev B 63:195415

    Article  ADS  Google Scholar 

  • Samela J, Kotakoski J, Nordlund K, Keinonen J (2005) A quantitative and comparative study of sputtering yields in Au. Nucl Instrum Methods Phys Res B 239(4):331–346

    Article  ADS  Google Scholar 

  • Samela J, Nordlund K, Popok VN, Campbell EEB (2008) Origin of complex impact craters on native oxide coated silicon surfaces. Phys Rev B 77:075309

    Article  ADS  Google Scholar 

  • Sand AE, Dequeker J, Becquart CS, Domain C, Nordlund K (2016) Non-equilibrium properties of interatomic potentials in cascade simulations in tungsten. J Nucl Mater 470:119–127

    Article  ADS  Google Scholar 

  • Sandoval L, Urbassek HM (2009) Influence of electronic stopping on sputtering induced by cluster impact on metallic targets. Phys Rev B 79(14):144115

    Article  ADS  Google Scholar 

  • Sastry S, Angell CA (2003) Liquid-liquid phase transition in supercooled silicon. Nat Mater 2:739

    Article  ADS  Google Scholar 

  • Schäfer C, Urbassek HM, Zhigilei LV (2002) X. Phys Rev B 66:115404

    Article  ADS  Google Scholar 

  • Schiwietz G, Grande PL (2011) Introducing electron capture into the unitary-convolution-approximation energy-loss theory at low velocities. Phys Rev A 84:052703. http://link.aps.org/doi/10.1103/PhysRevA.84.052703

    Article  ADS  Google Scholar 

  • GSchiwietz, KCzerski, MRoth, FStaufenbiel, Grande P (2004) Femtosecond dynamics – snapshots of the early ion-track evolution. Nucl Instrum Methods Phys Res Sect B 226(4):683–704

    Google Scholar 

  • Sillanpää J, Peltola J, Nordlund K, Keinonen J, Puska MJ (2001) Electronic stopping calculated using explicit phase shift factors. Phys Rev B 63:134113

    Article  ADS  Google Scholar 

  • Skupinski M, Toulemonde M, Lindeberg M, Hjort K (2005) Ion tracks developed in polyimide resist on Si wafers as template for nanowires. Nucl Instrum Methods Phys Res B 240(3):681–689. https://doi.org/10.1016/j.nimb.2005.04.128

    Article  ADS  Google Scholar 

  • Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262

    Article  ADS  Google Scholar 

  • Stoller RE, Tamm A, Beland LK, Samolyuk GD, Stocks GM, Caro A, Slipchenko LV, Osetsky YN, Aabloo A, Klintenberg M, Wang Y (2016) Impact of short-range forces on defect production from high energy collisions. J Chem Theory Comput 12(6):2871–2879

    Article  Google Scholar 

  • Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472

    Article  ADS  Google Scholar 

  • Stuchbery AE, Bezakova E (1999) Thermal-spike lifetime from picosecond-duration preequilibrium effects in hyperfine magnetic fields following ion implantation. Phys Rev Lett 82(18):3637

    Article  ADS  Google Scholar 

  • GSzenes (2005) Ion-induced amorphization in ceramic materials. J Nucl Mater 336(1):8–89

    Google Scholar 

  • Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991

    Article  ADS  Google Scholar 

  • Toimil-Molares ME (2012) Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology. Beilstein J Nanotechnol 3(1):860

    Article  Google Scholar 

  • Tombrello TA (1984) Track damage and erosion of insulators by ion-induced electronic processes. Nucl Instrum Methods Phys Res B https://doi.org/10.1016/0168-583X(84)90265-9

    Google Scholar 

  • Timkó H, Djurabekova F, Costelle L, Nordlund K, Matyash K, Schneider R, Toerklep A, Arnau-Izquierdo G, Descoeudres A, Calatroni S, Taborelli M, Wuensch W (2010) Mechanism of surface modification from the arc plasma-surface interaction in Cu. Phys Rev B 81:184109

    Article  ADS  Google Scholar 

  • Toulemonde M, Dufour C, Meftah A, Paumier E (2000) Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl Instrum Methods Phys Res B 166–167: 903–912

    Article  ADS  Google Scholar 

  • Toulemonde M, Assmann W, Dufour C, Meftah A, Studer F, Trautmann C (2006) Experimental phenomena and thermal spike model description of ion tracks in amorphisable inorganic insulators. Mat Fys Medd Kong Dan Vid Selsk 52:263

    Google Scholar 

  • Träskelin P, Salonen E, Nordlund K, Keinonen J, Wu CH (2004) Molecular dynamics simulations of CH3 sticking on carbon surfaces, angular and energy dependence. J Nucl Mater 334(1):65

    Article  ADS  Google Scholar 

  • Trautmann C, Klaumünzer S, Trinkaus H (2000) Effect of stress on track formation in amorphous iron boron alloy: ion tracks as elastic inclusion. Phys Rev Lett 85(17):3648

    Article  ADS  Google Scholar 

  • Urbassek HM, Kafemann H, Johnson R (1994) Atom ejection from a fast-ion track: a molecular-dynamics study. Phys Rev B 49(2):786

    Article  ADS  Google Scholar 

  • Vazquez H, Ahlgren EH, Ochedowski O, Leino AA, Mirzayev R, Kozubek R, Lebius H, Karlusic M, Jaksic M, Krasheninnikov AV, Kotakoski J, Schleberger M, Nordlund K, Djurabekova F (2017) Creating nanoporous graphene with swift heavy ions. Carbon 114:511

    Article  Google Scholar 

  • Waligórski RM, Hamm RN, Katz R (1986) The radial distribution of dose around the path of a heavy ion in liquid water. Nucl Tracks Meas 11:309

    Article  Google Scholar 

  • Wang ZG, Dufour C, Paumier E, Toulemonde M (1994) The se sensitivity of metals under swift-heavy-ion irradiation: a transient thermal process. J Phys: Condens Matter 53(34):6733

    ADS  Google Scholar 

  • Wang ZQ, Stroud D (1988) Monte Carlo studies of liquid semiconductor surfaces: Si and Ge. Phys Rev B 38(2):1384

    Article  ADS  Google Scholar 

  • Watanabe T, Yamasaki D, Tatsumura K, Ohdomari I (2004) X. Appl Surf Sci 234:207

    Article  ADS  Google Scholar 

  • Weber WJ, Zarkadoula E, Pakarinen OH, Sachan R, Chisholm MF, Liu P, Xue H, Jin K, Zhang Y (2014) Synergy of elastic and inelastic energy loss on ion track formation in srtio3. Sci Rep 5:7726

    Article  Google Scholar 

  • Yi X, Sand AE, Mason DR, Kirk MA, Roberts SG, Nordlund K, Dudarev SL (2015) Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades. EPL 110:36001

    Article  ADS  Google Scholar 

  • Yu JG, Sinnott SB, Phillpot SR (2007) Charge optimized many-body potential for the Si/SiO2 system. Phys Rev B 75(8):085311

    Article  ADS  Google Scholar 

  • Zeb MA, Kohanoff J, Sanchez-Portal D, Arnau A, Juaristi JI, Artacho E (2012) Electronic stopping power in gold: the role of d electrons and the H=He anomaly. Phys Rev Lett 108:225504

    Article  ADS  Google Scholar 

  • Zhigilei LV, Garrison BJ (1999) Pressure waves in microscopic simulations of laser ablation. Mat Res Soc Symp Proc 538:491

    Article  Google Scholar 

  • Zhigilei L, PBSKodali, Garrison BJ (1998) A microscopic view of laser ablation. J Chem Phys B 102:2845

    Article  Google Scholar 

  • Ziegler JF (1995) TRIM-95 computer code, private communication

    Google Scholar 

  • Ziegler JF (2013) SRIM-2013 software package, available online at http://www.srim.org

  • Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter. Pergamon, New York

    Book  Google Scholar 

  • Zinoviev AN (2015) Electron screening of the Coulomb potential at small internuclear distances. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 354:308–312

    Article  ADS  Google Scholar 

  • Zinoviev AN, Nordlund K (2017) Comparison of repulsive interatomic potentials calculated with an all-electron DFT approach with experimental data. Nucl Instrum Methods Phys Res B 406:511–517

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge gratefully the funding support by the Academy of Finland (grants No.1277579 and No.1309731) and Doctoral Programme in Materials Research and Nanosciences (MATRENA) of the University of Helsinki. We also would like to express our gratitude to all colleagues who were working on the related topics over the last decade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flyura Djurabekova .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Djurabekova, F., Nordlund, K. (2018). Molecular Dynamics Simulations of Non-equilibrium Systems. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_119-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_119-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics