Skip to main content

Mesoscopic Modelling of Irradiation Damage Processes: Bridging Many-Body Mechanics and Thermodynamics in Rate Processes

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling
  • 213 Accesses

Abstract

The integration of atomistic mechanics into the macroscopic modeling of rate-processes in solids should ensure the principles of statistical and thermal physics are not violated. Rate constants are customarily derived based on the transition state theory or its variants such as kinetic Monte Carlo simulation, phase-field model, and classical nucleation theory. In this perspective, we examine the assumptions traditionally made in constructing the mesoscopic connection between molecular mechanics and macroscopic thermodynamics, (1) separability of the reaction path from the noise created by lattice vibrations, (2) validity of classical statistics, and (3) existence of quasi-equilibrium among the reactants, the transition state, and the product. We find that the first assumption excludes rate processes at high temperatures or low reaction barrier, while the second excludes those at low temperatures or low reaction barrier. The third assumption has to reconcile with the nonequilibrium nature of rate processes, such as the neglect of entropy production which is proportional to the reaction rate, and thus excludes processes proceeding at fast rates. On this basis, the traditional approach in mesoscopic modeling is only reliable for rate processes in irradiation-damage accumulation with a high activation barrier and at not-too-high temperatures. The mitigation of these restrictions and evaluation of consequences due to their neglect can be formulated in a mesoscopic model in which the atomic processes in the many-body system are treated dynamically and energy quantization and quantum uncertainty are taken into account explicitly through the Mori-Zwanzig formalism of nonequilibrium statistical mechanics and the quantum fluctuation-dissipation relation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ala-Nissila T, Ying SC (1992) Theory of classical surface diffusion. Prog Surf Sci 39:227

    Article  ADS  Google Scholar 

  • Argyle BE, Charap SH, Pugh EW (1963) Deviation from T3/2 law for magnetization of ferrometals: Ni, Fe and Fe+3%Si. Phys Rev 132:2051

    Article  ADS  Google Scholar 

  • Becker R, Döring W (1935) Kinetische Behandlung der Keimbildung in ubersattigten Dampfern. Ann d Physik 24:719

    Article  ADS  Google Scholar 

  • Biget MP, Saada G (1989) Low-temperature plasticity of high-purity α-titanium single crystals. Phil Mag A 59:747–757

    Article  ADS  Google Scholar 

  • Bullough R (1985) Proceedings conference on dislocations and properties of real materials. Royal Society/The Institute of Metals, London, p 382

    Google Scholar 

  • Christiansen JA (1936) On an extension of Arrhenius’s view of the chemical reaction. Z Phys Chem B33 145:1936

    Google Scholar 

  • Collins MF, Minkiewicz VJ, Nathans R, Passell L, Shirane G (1969) Critical and spin-wave scattering of neutrons from iron. Phys Rev 179:417

    Article  ADS  Google Scholar 

  • Combs JA, Kunz C (1987) Perturbation theory of impurity diffusion. Phys Rev B 36:289

    Article  ADS  Google Scholar 

  • Crabtree GW, Sarrao JL (2012) Opportunities for mesocale science, Mater Soc Bull 37:1079

    Google Scholar 

  • Dausinger F, Schultz H (1975) Long-range migration of self-interstitial atoms in tungsten. Phys Rev Lett 35:1773

    Article  ADS  Google Scholar 

  • Donald R (2005) Einstein’s other theory: the Planck-Bose-Einstein theory of heat capacity. Princeton University Press, Princeton, p 73

    Google Scholar 

  • Ehrenfest P (1927) Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z Phys 45:455–457

    Article  ADS  Google Scholar 

  • Einstein A (1905) On the motion – required by the molecular kinetic theory of heat – of small particles suspended in a stationary liquid. Ann Phys 322:549

    Article  Google Scholar 

  • Eyre BL, Matthews JR (1993) Technological impact of microstructural evolution during irradiation. J Nucl Mater 205:1

    Article  ADS  Google Scholar 

  • Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3(1935):107

    Article  ADS  Google Scholar 

  • Flynn CP, Stoneham AM (1970) Quantum theory of diffusion with application to light interstitials in metals. Phys Rev B 1:3966

    Article  ADS  Google Scholar 

  • Frenkel YI (1946) Kinetic theory of liquids. Oxford University, Oxford

    MATH  Google Scholar 

  • Fu C-C, Dalla TJ, Willaime F, Bocquet J-L, Barbu A (2005) Multiscale modelling of defect kinetics in irradiated iron. Nat Mater 4:68

    Article  ADS  Google Scholar 

  • Ghoniem NM (1989) Stochastic theory of diffusional planar-atomic clustering and its application to dislocation loops. Phys Rev B 39:11810

    Article  ADS  Google Scholar 

  • Gibbs JW (1902) Elementary principles in statistical mechanics. Charles Scribner's Sons, New York

    MATH  Google Scholar 

  • Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill, New York

    Google Scholar 

  • Halilov SV, Perlov AY, Oppeneer PM, Eschrig H (1997) Magnon spectrum and related finite-temperature magnetic properties: a first-principle approach. Europhys Lett 39:91

    Article  ADS  Google Scholar 

  • IUPAC (2006) Compendium of chemical terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook. Last update: 2014-02-24; version: 2.3.3. DOI of this term: https://doi.org/10.1351/goldbook.M03963

  • Kelton KF, Greer AL (2010) Ch. 2, Nucleation in condensed matter: applications in materials and biology. Pergamon, Oxford

    Google Scholar 

  • Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, New York

    MATH  Google Scholar 

  • Kondepudi D, Prigogine I (1998) Modern thermodynamics. Wiley, New York

    MATH  Google Scholar 

  • Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284

    Article  ADS  MathSciNet  Google Scholar 

  • Kubo R (1966) The fluctuation-dissipation theorem. Rep Prog Phys 29:255

    Article  ADS  Google Scholar 

  • Laidler KJ, King MC (1983) The development of transition-state theory. J Phys Chem 87:2657–2664

    Article  Google Scholar 

  • Liouville J (1838) Note on the theory of the variation of arbitrary constants. J Math Pure Appl 3:342–349

    Google Scholar 

  • Ma PW, Woo CH, Dudarev SL (2008) Large-scale simulation of the spin-lattice dynamics in ferromagnetic iron. Phys Rev B 78:024434

    Article  ADS  Google Scholar 

  • Masel R (1996) Principles of adsorption and reactions on solid surfaces. Wiley, New York

    Google Scholar 

  • Matthews JR, Finnis MW (1988) Irradiation creep models – an overview. J Nucl Mater 159:257

    Article  ADS  Google Scholar 

  • Maury F, Biget M, Vajda P, Lucasson A, Lucasson P (1978) Frenkel pair creation and stage I recovery in W crystals irradiated near threshold. Radiat Eff 38:53

    Article  Google Scholar 

  • Mehrer H (2007) Diffusion in solids. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Miller WH (1974) Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants. J Chem Phys 62:1899–1906

    Article  ADS  Google Scholar 

  • Milonni PW (1994) The quantum vacuum. Academic, San Diego

    Google Scholar 

  • Mook HA, Nicklow RM (1973) Neutron scattering investigation of the magnetic excitations in iron. Phys Rev B 7:336

    Article  ADS  Google Scholar 

  • Mori H (1965) Transport, collective motion, and Brownian motion. Prog Theor Phys 33:423

    Article  ADS  Google Scholar 

  • Moskalenko VA, Natsik VD, Kovaleva VN (2005) The role of Peierls relief in the low-temperature plasticity of pure α-Ti. Low Temp Phys 31:907

    Article  ADS  Google Scholar 

  • Munakata T, Tsurui A (1979) Interacting Brownian motion in a periodic potential. Zeitschrift Fur Physik B 34:203

    Article  ADS  Google Scholar 

  • Pavliotis GA, Vogiannou A (2008) Diffusive transport in periodic potentials: underdamped dynamics. Fluct Noise Lett 08:L155

    Article  MathSciNet  Google Scholar 

  • Pineda JRET, Schwartz SD (2006) Protein dynamics and catalysis: the problems of transition state theory and the subtlety of dynamic control. Philos Trans R Soc Lond Ser B Biol Sci 361(1472):1433–1438

    Article  Google Scholar 

  • Sand AE, Dequeker J, Becquart CS, Domain C, Nordlund K (2016) Non-equilibrium properties of interatomic potentials in cascade simulations in tungsten. J Nucl Mater 470:119

    Article  ADS  Google Scholar 

  • Short MP, Yip S (2015) Materials aging at the mesoscale: kinetics of thermal, stress, radiation activations. Curr Opin Solid State Mater Sci 19:245–252

    Article  ADS  Google Scholar 

  • Smoluchowski M (1906) Zür Kinetischen Theorie der Brownschen Molekular bewegung und der suspensionen. Ann Phys 326:756

    Article  Google Scholar 

  • Swinburne TD, Dudarev SL, Fitzgerald SP, Gilbert MR, Sutton AP (2013) Theory and simulation of the diffusion of kinks on dislocations in bcc metals. Phys Rev B 87:064108

    Article  ADS  Google Scholar 

  • Swinburne TD, Dudarev SL, Sutton AP (2014) Classical mobility of highly mobile crystal defects. Phys Rev Lett 113:215501

    Article  ADS  Google Scholar 

  • Swinburne TD, Ma PW, Dudarev SL (2017) Low temperature diffusivity of self-interstitial defects in tungsten. New J Phys 19:073024

    Article  Google Scholar 

  • Van Kampen NG (1992) Stochastic processes in physics and chemistry. Elsevier Science BV, Amsterdam, p 452

    Google Scholar 

  • Van Kranendonk J, Van Vleck JH (1958) Spin waves. Rev Mod Phys 30:1

    Article  ADS  MathSciNet  Google Scholar 

  • Van Vleck JH (1945) A survey of the theory of ferromagnetism. Rev Mod Phys 17:27

    Article  ADS  Google Scholar 

  • Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3:121

    Article  ADS  Google Scholar 

  • Wallace DC, Sidles PH, Danielson GC (1960) Specific heat of high purity iron by a pulse heating method. J Appl Phys 31:168

    Article  ADS  Google Scholar 

  • Wen H, Woo CH (2014) Temperature dependence of enthalpies and entropies of formation and migration of mono-vacancy in BCC iron. J Nucl Mater 455:31

    Article  ADS  Google Scholar 

  • Wen H, Woo CH (2016) Quantum statistics and anharmonicity in the thermodynamics of spin waves in ferromagnetic metals. Phys Rev E 94:032104

    Article  ADS  Google Scholar 

  • Woo CH (1988) Theory of irradiation deformation in non-cubic metals: effects of anisotropic diffusion. J Nucl Mater 159:237

    Article  ADS  Google Scholar 

  • Woo CH (2005) Modeling irradiation damage accumulation in crystals. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht, pp 959–986

    Chapter  Google Scholar 

  • Woo CH, Singh BN (1992) Production bias due to clustering of point defects in irradiation-induced cascades. Phil Mag A 65:889

    Article  ADS  Google Scholar 

  • Woo CH, Wen H (2017) Quantum statistical effects in the mass transport of interstitial-solutes in a crystalline solid. Phys Rev E 96:032133

    Article  ADS  Google Scholar 

  • Woo CH, Wen H, Semenov AA, Dudarev SL, Ma PW (2015) Quantum heat bath for spin-lattice dynamics. Phys Rev B 91:104306

    Article  ADS  Google Scholar 

  • Yi X, Sand AE, Mason DR, Kirk MA, Roberts SG, Nordlund K, Dudarev SL (2015) Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascade. Europhys Lett 110:36001

    Article  ADS  Google Scholar 

  • Yip S, Short MP (2013) Multiscale materials modeling at the mesoscale. Nat Mater 12:774–777

    Article  ADS  Google Scholar 

  • Zeldovich YB (1942) Theory of nucleation and condensation. Sov J Exp Theor Phys 12:525

    Google Scholar 

  • Zwanzig R (1965) Time-correlaction functions and transport coefficients in statistical mechanics. Annu Rev Phys Chem 16:67

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung H. Woo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Woo, C.H. (2018). Mesoscopic Modelling of Irradiation Damage Processes: Bridging Many-Body Mechanics and Thermodynamics in Rate Processes. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_114-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_114-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics