Skip to main content

Coastal Soils

  • Living reference work entry
  • First Online:
Encyclopedia of Coastal Science

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Introduction

The occurrence of soil in coastal zones is not a simple matter to resolve. Summarized coastal zones form a global perspective that only briefly indicates potential occurrence of soil in relation to coastal landforms, maritime climates, drainage, vegetation, and time available for formation. Increased understanding of coastal soils is, however, only possible from the purview of specific examples that illustrate soil distribution patterns in terms of sequences based on soil-forming factors of topography (toposequences), time (chronosequences), climate change (climosequence), and biological factors (biosequence). The conceptual frameworks for the models were initially postulated by Jenny (1941) and subsequently enhanced by various other researchers (e.g., Butler 1959, 1967; Runge 1973; Huggett 1975). The value of these sequential paradigms is that they provide visualization of complex interrelationships in a framework that clarifies and elucidates coastal-soil transition...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • AFES (Association Française pour l’Etude du sol) (1992) Référentiel pédologique, principaux sols d’Europe. INRA, Paris

    Google Scholar 

  • Allard M (2001) Late-Holocene climatic changes as detected by the growth and decay of ice wedges on the southern shore of Hudson Strait, northern Québec, Canada. Holocene 11(5):563–578

    Article  Google Scholar 

  • Amador JA, Jones RD (1995) Carbon mineralization in pristine and phosphorus-enriched peat soils of the Florida Everglades. Soil Sci 159(2):129–135

    Article  Google Scholar 

  • Arbogast AF, Loope WL (1999) Maximum-limiting ages of Lake-Michigan coastal dunes: their correlation with Holocene lake level history. J Great Lakes Res 29:372–382

    Article  Google Scholar 

  • Ballarini M, Wallinga J, Murray AS, van Heteren S, Oost AP, Bos AJJ, van Eijk CWE (2003) Optical dating of young coastal dunes on a decadal timescale. Quat Sci Rev 22(10–13):1011–1018

    Article  Google Scholar 

  • Beach DK (1982) Depositional and diagenetic history of pliocene-pleistocene carbonates, northwestern Great Bahama Bank: evolution of a carbonate platform. Doctoral dissertation. University of Miami, Miami

    Google Scholar 

  • Berger GW, Murray AS, Havholm KG (2003) Photonic dating of Holocene back-barrier coastal dunes, northern North Carolina, USA. Quat Sci Rev 22(10–13):1043–1051

    Article  Google Scholar 

  • Beyer L, Knicker H, Blume H-P, Bölter M, Vogt B, Schneider D (1997) Soil organic matter of suggested spodic horizons in relic ornithogenic soils of coastal continental Antarctica (Casey Station, Wilkes Land) in comparison with that of spodic soil horizons in Germany. Soil Sci 162(7):518–527

    Article  Google Scholar 

  • Black RF (1964) Gubik formation of Quaternary age in northern Alaska. U.S. Geological Survey Professional Paper, 302-C, pp 59–91

    Google Scholar 

  • Blackburn G, Bond RD, Clarke ARP (1965) Soil development associated with stranded beach ridges in south-east South Australia. CSIRO, Soil Publication No. 22, Melbourne

    Google Scholar 

  • Bloom AL, Stuvier M (1963) Submergence of the Connecticut coast. Science 139:333–334

    Article  Google Scholar 

  • Bloom AL, Yonekura N (1985) Coastal terraces generated by sea-level change and tectonic uplift. In: Woldenberg MJ (ed) Models in geomorphology. Symposium on Geomorphology International Series No. 14, Binghamton. Allen & Unwin, Boston, pp 139–154

    Google Scholar 

  • Blum MD, Carter AE, Zayac T, Goble R (2001) Middle Holocene sea-level and evolution of the Gulf of Mexico Coast (USA). J Coast Res 36(Special issue):65–80

    Google Scholar 

  • Boardman MR, McCartney RF, Eaton MR (1995) Bahamian paleosols: origin, relation to paleoclimate, and stratigraphic significance. In: Curran A, White B (eds) Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America Special Paper 300. Geological Society of America, Boulder, pp 33–49

    Chapter  Google Scholar 

  • Boesch DF, Josselyn MN, Mehta AJ, Morris JT, Nuttle WK, Simenstad CA, Swift DJP (1994) Scientific assessment of coastal wetland loss, restoration and management in Louisiana. J Coast Res 20(Special issue):1–103

    Google Scholar 

  • Bowman S (1990) Radiocarbon dating. University of California Press and the British Museum, Berkeley

    Google Scholar 

  • Bretz JH (1960) Bermuda: a partially drowned late mature Pleistocene karst. Geol Soc Am Bull 71:1729–1754

    Article  Google Scholar 

  • Brown TW (1986) The formation of pedogenic calcrete: its stratigraphic and diagenetic significance in the quaternary limestones on San Salvador Island, Bahamas. Master’s thesis, Indiana University, Bloomington

    Google Scholar 

  • Brown RB, Stone EL, Carlisle VW (1990) Soils. In: Myers RL, Ewel JJ (eds) Ecosystems of Florida. University of Central Florida Press, Orlando, pp 35–69

    Google Scholar 

  • Buol SW, Hole FD, McCracken RJ (1980) Soil genesis and classification. University of Iowa Press, Ames

    Google Scholar 

  • Burges A, Drover DP (1953) The rate of Podzol development in sands of the Woy Woy District, N.S.W. Aust J Bot 1:83–94

    Article  Google Scholar 

  • Butler BE (1959) Periodic phenomena in landscapes as a basis for soil studies. C.S.I.R.O. (Australia) Soil Publication No. 14

    Google Scholar 

  • Butler BE (1967) Soil periodicity in relation to landform development in southeastern Australia. In: Jennings JN, Mabbutt JA (eds) Landform studies from Australia and New Guinea. Australian National University Press, Canberra, pp 231–255

    Google Scholar 

  • Callaway JC, DeLaune RD, Patrick WH Jr (1997) Sediment accretion rates from four coastal wetlands along the Gulf of Mexico. J Coast Res 13(1):181–191

    Google Scholar 

  • Carew JL, Mylroie JE (1994) Discussion of Hearty, P.J., and Kindler, P., 1993. New perspectives on Bahamian geology: San Salvador Island, Bahamas. J Coast Res 10(4):1087–1094

    Google Scholar 

  • Clague JJ, Hutchinson I, Mathews RW, Patterson RT (1999) Evidence for late Holocene tsunamis at Catala Lake, British Columbia. J Coast Res 15(1):45–60

    Google Scholar 

  • Clayton JS, Ehrlich WA, Cann DB, Day JH, Marshall IB (1977) Soils of Canada. Soil report, vol 1; Soil inventory, vol II. Supply and Services Canada, Ottawa

    Google Scholar 

  • Cook PJ, Colwell JB, Firman JB, Lindsay JM, Schwebel DA, Von Der Borsch CC (1977) Late Cainozoic sequence of South East Australia and sea level changes. BMR J Geol Geophys 2:81–88

    Google Scholar 

  • Cooper WS (1966) Coastal sand dunes of Oregon and Washington. Geological Society of America Memoir, Boulder, p 72

    Google Scholar 

  • CPCS (1967) Classification des sols. ENSA, Grignon, 87 p

    Google Scholar 

  • Curray JR (1978) Transgressions and regressions. Reprint of Original 1964 paper. In: Swift JP, Palmer HD (eds) Coastal sedimentation. Benchmark Papers in Geology No. 42. Dowden, Hutchinson & Ross, Stroudsburg, pp 97–203

    Google Scholar 

  • Daniels RB, Hammer RD (1992) Soil geomorphology. Wiley, New York

    Google Scholar 

  • Daniels RB, Perkins HF, Hajek BF, Gamble EE (1978) Morphology of discontinuous phase plinthite and criteria for its field identification in the southeastern United States. Soil Sci Soc Am J 42:944–949

    Article  Google Scholar 

  • Darmody RG, Foss JE (1979) Soil-landscape relationships of the tidal marshes of Maryland. Soil Sci Soc Am J 43:534–541

    Article  Google Scholar 

  • Davis RA (1978) Coastal sedimentary environments. Springer, New York

    Book  Google Scholar 

  • Delaney PJV (1966) Geology and geomorphology of the coastal plain of Rio Grande do Sul, Brazil and Northern Uruguay. Coastal Studies Series No. 15. Louisiana State University Press, Baton Rouge

    Google Scholar 

  • DeLaune RD, Smith CJ, Patrick WH, Roberts HH (1987) Rejuvenated marsh and bay-bottom accretion on the rapidly subsiding coastal plain of the U.A. Gulf Coast: a second-order effect of the emerging Atchafalaya Delta. Estuar Coast Shelf Sci 25(4):381–389

    Article  Google Scholar 

  • DeLaune RD, Pezeshki SR, Pardue JH, Whitcomb JH, Patrick WH (1990) Some influences of sediment addition to deteriorating marshes in the Mississippi River deltaic plain: a pilot study. J Coast Res 6(1):181–188

    Google Scholar 

  • Denny C, Owens JP (1979) Sand dunes on the central Delmarva Peninsula, Maryland and Delaware. U.S. Government Printing Office, Geological Survey Professional Paper 1067-C, Washington, DC

    Google Scholar 

  • Dent DL (1986) Acid sulfate soils: a baseline for research and development. ILRI Publication No. 39. International Institute for Land Reclamation and Improvement (ILRI), Wageningen

    Google Scholar 

  • Dent DL, Pons LJ (1995) Acid sulphate soils: a world view. Geoderma 67:263–276

    Article  Google Scholar 

  • Dreissen PM, Dudal R (eds) (1989) The major soils of the world. Lecture notes on their geography, formation, properties and use. Agricultural University and Belgium; Katholieke Universiteit Leuven, Wageningen

    Google Scholar 

  • Enos P, Perkins RD (1977) Quaternary sedimentation in South Florida. Geological Society of America Memoir, Boulder, p 147

    Google Scholar 

  • Fairbridge RW (1950) The geology and geomorphology of Point Peron, Western Australia. J R Soc West Aust 34:35–72

    Google Scholar 

  • Fairbridge RW (1961) Eustatic changes in sea level. In: Ahrens LH, Press L, Rankema K, Runcorn SK (eds) Physics and chemistry of the earth, vol 4. Pergamon, Oxford, pp 99–185

    Google Scholar 

  • Fairbridge RW, Finkl CW (1980) Cratonic erosional unconformities and peneplains. J Geol 88:69–86

    Article  Google Scholar 

  • FAO (1991) World soil resources. An explanatory note on the FAO world soil resources map at 1:25,000,000 scale. Report No. 66. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO-UNESCO-ISRIC (1988) Soil map of the world. Revised legend. World Soil Resources, Report No. 60. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Finkl CW (1979) Stripped (etched) landsurfaces in southern Western Australia. Aust Geogr Stud 17(1):33–52

    Article  Google Scholar 

  • Finkl CW (1980) Stratigraphic principles and practices as related to soil mantles. Catena 7(2/3):169–194

    Article  Google Scholar 

  • Finkl CW (ed) (1981) Soil classification, vol 1. Hutchinson Ross, Benchmark Papers in Soil Science, Stroudsburg

    Google Scholar 

  • Finkl CW (1982a) The geography of soil classification. Quaes Geogr 8:55–59

    Google Scholar 

  • Finkl CW (1982b) Toward a comprehensive soil classification system. Geogr Bull 21:41–47

    Google Scholar 

  • Finkl CW (1984) Chronology of weathered materials and soil age determinations in pedostratigraphic sequences. Chem Geol 44(1/3):311–335

    Article  Google Scholar 

  • Finkl CW (1995) Water resources management in the Florida Everglades: are ‘lessons from experience’ a prognosis for conservation in the future? J Soil Water Conserv 50:592–600

    Google Scholar 

  • Finkl CW (2000) Identification of unseen flood hazard impacts in southeast Florida through interpretation of remote sensing and geographic information system techniques. Environ Geosci 7(3):119–136

    Article  Google Scholar 

  • Finkl CW, Churchward HM (1973) The etched landsurfaces of southwestern Australia. J Geol Soc Aust 20(3):295–307

    Article  Google Scholar 

  • Finkl CW Jr (1994) Disaster mitigation in the South Atlantic Coastal Zone (SACZ): a prodrome for mapping hazards and coastal land systems using the example of urban subtropical southeastern. In: Finkl CW (ed) Coastal hazards: perception, susceptibility and mitigation. Coastal Education and Research Foundation, Charlottesville, pp 339–366

    Google Scholar 

  • Fletcher CH, Sherman CE (1995) Submerged shorelines on Oahu, Hawaii: archive of episodic transgression during the deglaciation? In: Finkl CW (ed) Holocene cycles: climate, sea level, and sedimentation. Coastal Education and Research Foundation, West Palm Beach. J Coastal Res 17(Special issue):141–152

    Google Scholar 

  • Frechen M, Neber A, Dermann B, Tsatskin A, Boenigk W, Ronen A (2002) Chronostratigraphy of aeolianites from the Sharon Coastal Plain of Israel. Quat Int 89(1):31–45

    Article  Google Scholar 

  • Gerrard AJ (1981) Soils and landforms: an integration of geomorphology and pedology. Allen and Unwin, London

    Google Scholar 

  • Gleason PJ, Cohen AD, Smith WG, Brooks HK, Stone PA, Goodrick RL, Spackman W Jr (1984) The environmental significance of Holocene sediments from the Everglades and saline tidal plain. In: Gleason PJ (ed) Environments of South Florida: past and present, vol II. Miami Geological Society, Coral Gables, pp 297–351

    Google Scholar 

  • Goodwin RA (1987) Soil survey of Pamlico County, North Carolina. U.S. Department of Agriculture, Soil Conservation Service, Washington, DC

    Google Scholar 

  • Goudie A (1973) Duricrusts in tropical and subtropical landscapes. Clarendon, Oxford

    Google Scholar 

  • Haq BU (ed) (1995) Sequence stratigraphy and depositional response to eustatic, tectonic and climatic forcing. Kluwer, Dordrecht

    Google Scholar 

  • Harvey JW, Krupa SL, Gefvert C, Mooney RH, Choi J, King SA, Giddings JB (2002) Interactions between surface water and ground water and effects on mercury transport in the north-central Everglades. Water-Resources Investigations Report 02-4050. U.S. Geological Survey, Reston

    Google Scholar 

  • Hays J (1967) Land surfaces and laterite sin the north of the Northern Territory. In: Jennings JN, Mabbutt JA (eds) Landform studies from Australia and New Guinea. Australian National University Press, Canberra, pp 182–210

    Google Scholar 

  • Hearty PJ, Kindler P (1997) The stratigraphy and surficial geology of New Providence Island and surrounding islands, Bahamas. J Coast Res 13(3):798–812

    Google Scholar 

  • Hearty PJ, Vacher HL, Mitterer RM (1992) Aminostratigraphy and ages of Pleistocene limestones of Bermuda. Geol Soc Am Bull 104:471–480

    Article  Google Scholar 

  • Herwitz SR, Muhs D (1995) Bermuda solution pipe soils: a geochemical evaluation of eolian parent materials. In: Curran HA, White B (eds) Terrestrial and shallow marine geology of the Bahamas and Bermuda. Geological Society of America, Bahamas-Bermuda Special Paper 300, pp 311–323

    Chapter  Google Scholar 

  • Herwitz SR, Muhs D, Prospero J, Vaughn B (1996) Origin of Bermuda’s clay-rich paleosols and their climatic signify-cance. J Geophys Res-Atmos 101:23,389–23,400

    Article  Google Scholar 

  • Huggett RJ (1975) Soil landscape systems: a model of soil genesis. Geoderma 13(1):1–22

    Article  Google Scholar 

  • Huiskes AHL (1990) Possible effects of sea level changes on saltmarsh vegetation. In: Beukema JJ et al (eds) Expected effects of climatic change on marine coastal ecosystems. Kluwer, Dordrecht, pp 167–172

    Chapter  Google Scholar 

  • Hussein AH, Rabenhorst MC (2001) Tidal inundation of transgressive coastal areas: pedogenesis of salinization and alkalization. Soil Sci Soc Am J 65(2):536–545

    Article  Google Scholar 

  • Inman DL, Nordstrom CE (1971) On the tectonic and morphologic classification of coasts. J Geol 79(1):1–21

    Article  Google Scholar 

  • Inubushi K, Furukawa Y, Hadi A, Purnomo E, Tsuruta H (2003) Seasonal changes of CO2, CH4 and N2/O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere 52(3):603–609

    Article  Google Scholar 

  • Jelgersma S, De Jong J, Zagwijn WH, Van Regteren Altena JF (1970) The coastal dunes of the western Netherlands; geology, vegetational history and archaeology. Mededelingen Rijks Geologische Dienst, Nieuwe Serie No. 21

    Google Scholar 

  • Jenny H (1941) Factors of soil formation. A system of quantitative pedology. McGraw Hill, New York

    Google Scholar 

  • Jenny H, Arkley RJ, Schultz AM (1969) The pygmy forest-Podzol ecosystem and its dune associates in the Mendocina coast. Madrono 20:60–74

    Google Scholar 

  • Johnson ME (1992) Ancient rocky shores: a brief history and annotated bibliography. J Coast Res 8:797–812

    Google Scholar 

  • Karpytchev YA (1993) Reconstruction of Caspian sea-level fluctuations: radiocarbon dating coastal and bottom deposits. Radiocarbon 35(3):400–420

    Article  Google Scholar 

  • Karunakaran C, Sinha Roy S (1981) Laterite profile development linked with polycyclic geomorphic surfaces in south Kerala. In: Krishnaswamy VS (ed) Lateritisation processes (Proceedings of the international seminar on lateritisation processes, 11–14 December 1979, Trivandrum, India). Balkema, Rotterdam, pp 221–231

    Google Scholar 

  • Kelletat DH (1995) Atlas of Coastal Geomorphology and Zonality. Coastal Education and Research Foundation, West Palm Beach

    Google Scholar 

  • Krupa SL (1999) Recognition and analysis of secondary depositional crusts in the surficial aquifer system of southeast Florida. Master’s thesis, Florida Atlantic University, Boca Raton

    Google Scholar 

  • Kukla GJ (1977) Pleistocene land-sea correlations. I. Europe. Earth-Sci Rev 13:307–374

    Article  Google Scholar 

  • Leatherman SP (1979) Barrier Islands: from the Gulf of St. Lawrence to the Gulf of Mexico. Academic, New York

    Google Scholar 

  • Less BG, Lu Y (1992) A preliminary study on formation of the sand dune systems in the northern Australian coastal zone. Chin Sci Bull 37(7):587–592

    Google Scholar 

  • Li C, Wang P (1991) Stratigraphy of the late Quaternary barrier-lagoon depositional systems along the coast of China. Sediment Geol 72:189–200

    Article  Google Scholar 

  • Libbey LK, Johnson ME (1997) Upper Pleistocene rocky shores and intertidal biotas at Playa La Palmita (Baja California Sur, Mexico). J Coast Res 13(1):216–225

    Google Scholar 

  • Lissman JC, Oxenford RJ (1975) Eneabba rutile-zircon-ilmenite sand deposit, WA. In: Knight CL (ed) Economic geology of Australia and Papua New Guinea. Metals, vol 1. Monograph No. 5. Australian Institute of Mining and Metallurgy, Melbourne, pp 1062–1088

    Google Scholar 

  • Liu C, Walker HJ (1989) Sedimentary characteristics of cheniers and the formation of the chenier plains of east China. J Coast Res 5:353–368

    Google Scholar 

  • Lodge TE (1994) The Everglades handbook: understanding the ecosystem. St. Lucie Press, Delray Beach

    Google Scholar 

  • Loope WL, Arbogast AF (2002) Dominance of an ∼150-year cycle of sand-supply change in late Holocene dune-building along the Eastern Shore of Lake Michigan. Quat Res 54:414–422

    Article  Google Scholar 

  • Markewich HW et al (1986) Soil development and its relation to the ages of morphostratigraphic units in Horry County, South Carolina. Bulletin No. 1589. U.S. Geological Survey, Reston

    Google Scholar 

  • Maroukian H, Gaki-Papanastassiou K, Papanastassiou D, Palyvos N (2000) Geomorphological observations in the coastal zone of Kyllini Peninsula, NW Peloponnesus-Greece, and their relation to the seismotectonic regime of the area. J Coast Res 16(3):853–863

    Google Scholar 

  • McArthur WM, Bettenay E (1956) The soils and irrigation potential of the Capel-Boyanup area, Western Australia. CSIRO Soils and Land Use Series No.16. CSIRO, Melbourne

    Google Scholar 

  • McArthur WM, Bettenay E (1960) The development and distribution of the soils of the Swan coastal plain, Western Australia. CSIRO Australia Soil Publication No. 16

    Google Scholar 

  • McArthur WM, Bettenay E (1979) The land. In: O’Brien BJ (ed) Environment and science. University of Western Australia Press, Nedlands, pp 22–52

    Google Scholar 

  • McCollum SH, Cruz OE, Stem LT, Wittstruck WH, Ford RD, Watts FC (1978) Soil survey of Palm Beach County area, Florida. U.S. Department of Agriculture, Soil Conservation Service, Washington, DC

    Google Scholar 

  • McFarlane MJ (1976) Laterite and landscape. Academic, London

    Google Scholar 

  • McFarlane MJ, Ringrose S, Giusti L, Shaw PA (1995) The origin and age of karstic depressions in the Darwin-Koolpinyah area, N.T. In: Brown AG (ed) Geomorphology and groundwater. Wiley, New York, pp 93–120

    Google Scholar 

  • McNally GH, Clarke G, Weber BW (2000) Porcellanite and the urban geology of Darwin, Northern Territory. Aust J Earth Sci 47:35–44

    Article  Google Scholar 

  • Mendelssohn IA, McKee KL (1988) Spartina alterniflora dieback in Louisiana: time-course investigation of soil waterlogging effects. J Ecol 76:509–521

    Article  Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91:1–21

    Article  Google Scholar 

  • Milnes AR, Thierry M (1992) Silcretes. In: Martin IP, Chesworth W (eds) Soils and paleosols. Elsevier, Amsterdam, pp 349–377

    Chapter  Google Scholar 

  • Mook WG, van de Plassche O (1986) Radiocarbon dating. In: van de Plassche O (ed) Sea-level research: a manual for the collection and evaluation of data. Geo Books, Norwich, pp 525–560

    Chapter  Google Scholar 

  • Nelson AR, Kashima K (1993) Diatom zonation in southern Oregon tidal marshes relative to vascular plants, foraminifera, and sea level. J Coast Res 9(3):673–697

    Google Scholar 

  • Nordstrom K, Psuty N, Carter W (1990) Coastal dunes: form and process. Wiley, Chichester

    Google Scholar 

  • Nyman JA, Delaune RD, Roberts HH, Patrick WH Jr (1993) Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Mar Ecol Prog Ser 96:269–279

    Article  Google Scholar 

  • Ollier C, Pain C (1996) Regolith, soils and landforms. Wiley, Chichester

    Google Scholar 

  • Otvos EG, Price WA (1979) Problems of chenier genesis and terminology-an overview. Mar Geol 31:251–263

    Article  Google Scholar 

  • Petit M (1985) A provisional world map of duricrust. In: Douglas I, Spencer T (eds) Environmental change and tropical geomorphology. Allen & Unwin, London, pp 269–279

    Google Scholar 

  • Playford PE, Leech REJ (1977) Geology and hydrology of Rottnest Island. Geological Survey of Western Australia Report No. 6

    Google Scholar 

  • Pons LJ, van Breeman N (1982) Factors influencing the formation of potential acidity in tidal swmaps. In: Dost H, van Breeman N (eds) Proceedings of the Bangkok symposium on acid sulphate soils. ILRI Publication No. 31. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, pp 37–51

    Google Scholar 

  • Quarto A, Cissna K (1997) The mangrove action project. In: Peck D (ed) Ramsar convention on wetlands, 2 p [ramsar@ramsar.org; Ramsar Convention Bureau, Rue Mauverney 28, CH-1196 Gland, Switzerla nd]

    Google Scholar 

  • Rabenhorst MC (1997) The chrono-continuum: an approach to modeling pedogenesis in marsh soils along transgressive coastlines. Soil Sci 167:2–9

    Article  Google Scholar 

  • Rabenhorst MC, Swanson D (2000) Histosols. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp E183–E209

    Google Scholar 

  • Radtke U (1989) Marine Terrassen und Korallenriffe-Das Problem der quartären Meerespiegelschwankungen erläutert an Fallstudien aus Chile, Argentinien und Barbados. Düsseldorfer Geographische Schriften, 27 (Düsseldorf)

    Google Scholar 

  • Redfield AC (1972) Development of a New England salt marsh. Ecol Monogr 42:201–237

    Article  Google Scholar 

  • Retallack GJ (1990) Soils of past: an introduction to paleopedology. Harper Collins Academic, London

    Book  Google Scholar 

  • Rieger S (1983) The genesis and classification of cold soils. Academic, New York

    Google Scholar 

  • Rink WJ, Forrest B (2004) Dating evidence for the accretion history of beach ridges on Cape Canaveral and Merritt Island, Florida, USA. J Coast Res 20(3)

    Google Scholar 

  • Ritsema CJ, van Memsvoort MEF, Dent DL, van den Bosch H, van Wijk ALM (2000) Acid sulfate soils. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp G121–G154

    Google Scholar 

  • Roberts HH, Coleman JM (1996) Holocene evolution of the deltaic plain: a perspective-from Fisk to present. Eng Geol 45(1996):113–138

    Article  Google Scholar 

  • Ruhe RV (1965) Quaternary paleopedology. In: Wright HE, Frey DE (eds) The quaternary of the United States. Princeton University Press, Princeton, pp 755–764

    Google Scholar 

  • Runge ECA (1973) Soil development sequences and energy models. Soil Sci 115:183–193

    Article  Google Scholar 

  • Rutter H, Schnack EJ, Fasano JL, Isla FI, Del Rio J, Radtke U (1989) Correlation and dating of Quaternary littoral zones along the coast of Patagonia and Tierra del Fuego. Quat Sci Rev 8:213–234

    Article  Google Scholar 

  • Saito Y, Wei H, Zhou Y, Nishimura A, Sato Y, Yokota S (2000) Delta progradation and chenier formation in the Huanghe (Yellow River) delta, China. J Asian Earth Sci 18(2000):489–497

    Article  Google Scholar 

  • Sayles RW (1931) Bermuda during the Ice Age. Am Acad Arts Sci 66:183–190

    Google Scholar 

  • Schellmann G, Radtke U (2001) Neue Ergebnisse zur Verbreitung und Altersstellung gehobener Korallenriffterrassen im Süden von Barbados. In: Schellmann G (ed) Von de Nordseeküste bis Neuseeland-Beiträge zur 19 Jahrestagung des Arbeitskreises “Geographie der Meer und Küsten” vom 24–27 Mai 2001 in Bamberg. Bamberger Geographische Schriften, 20: 201–224

    Google Scholar 

  • Schellmann G, Radtke U (2003) Coastal terraces and Holocene sea-level changes along the Patagonian Atlantic coast. J Coast Res 19(4):983–1010

    Google Scholar 

  • Schirrmeister L, Siegert C, Kunitzky VV, Grootes PM, Erlenkeuser H (2002) Late Quaternary ice-rich permafrost sequences as a paleoenvironmental archive for the Laptev Sea Region in northern Siberia. Int J Earth Sci 91:154–167

    Article  Google Scholar 

  • Schlichting E (1973) Pseudogleye und Gleye-Genese und Nutzung hydromorpher Böden. In: Schlichting E, Schwertmann U (eds) Pseudogley and gley (Transactions of Commissions V and VI of the International Society of Soil Science). Weinheim, Germany, Verlag Chemie, pp 1–6

    Google Scholar 

  • Searle DJ, Woods P (1986) Detailed documentation of Holocene sea-level record in the Perth region, South Western Australia. Quat Res 26:299–308

    Article  Google Scholar 

  • Searle DJ, Semeniuk V, Woods PJ (1988) Geomorphology, stratigraphy and Holocene history of the Rockingham-Becher Plain, South-western Australia. J R Soc West Aust 70(4):89–109

    Google Scholar 

  • Sevink J (1991) Soil development in the coastal dunes and its relation to climate. Landsc Ecol 6(1/2):49–56

    Article  Google Scholar 

  • Shaw JN, West LT, Truman CC, Radcliffe DE (1997) Morphologic and hydraulic properties of soil with water restrictive horizons in the Georgia Coastal Plain. Soil Sci 162(12):875–885

    Article  Google Scholar 

  • Short AD (2003) Cross-shore sediment transport around Australia-sources, mechanisms, rates, and barrier forms. In: ASCE international conference on coastal sediments, Clearwater Beach, 18–23 May 2003. Coastal Sediments Book of Abstracts, pp 216–217

    Google Scholar 

  • Sibirtzev NM (1901) Russian soil investigations. In: Finkl CW (ed) Benchmark papers in soil science. Soil classification, vol 1. Hutchinson Ross Publishing Company, Stroudsburg, pp 15–35

    Google Scholar 

  • Soil Survey Staff (1975) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. Agriculture Handbook No. 436. U.S. Department of Agriculture, Washington

    Google Scholar 

  • Soil Survey Staff (1992) Keys to soil taxonomy. Technical Monograph No. 19. U.S. Department of Agriculture, Soil Management Support Services, Washington, DC

    Google Scholar 

  • Spaargaren OC (compiler and ed) (1994) World reference base for soil resources. FAO, Land and Water Development Division, Rome, 161 p

    Google Scholar 

  • Spaargaren OC (2000) Other systems of soil classification. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp E137–E174

    Google Scholar 

  • Spackman W, Dolsen CP, Riegel W (1966) Phytogenic organic sediments and sedimentary environments in the Everglades-Mangrove complex. Part I: evidence of a transgressing sea and its effects on environments of the Shark River area of Southeastern Florida. Paléo 117(B):135–152

    Google Scholar 

  • Stevens JC, Allen LH Jr, Chen EC (1984) Organic soil subsidence. Geol Soc Am Rev Eng 6:107–122

    Article  Google Scholar 

  • Stiles CA, Mora CI, Driese SG, Robinson AC (2003) Distinguishing climate and time in the soil record: mass-balance trends in Vertisols from the Texas coastal prairie. Geology 31(4):331–335

    Article  Google Scholar 

  • Tanner WF (1995) Origin of beach ridges and swales. Mar Geol 129:149–161

    Article  Google Scholar 

  • Tatur A (1989) Ornithogenic soils of maritime Antacrtica. Polar Res 10:481–532

    Google Scholar 

  • Tedrow JCF (1977) Soils of the polar landscapes. Rutgers University Press, New Brunswick

    Google Scholar 

  • Thorp J, Smith G (1949) Higher categories of soil classification: order, suborder and great group. Soil Sci 67:117–126

    Article  Google Scholar 

  • Ugolini FC (1972) Ornithogenic soils of Antacrtica. In: Liano GA (ed) Antarctic terrestrial biology. American Geophysical Union antarctic research series, vol 20, pp 181–193

    Chapter  Google Scholar 

  • Vacher HL, Hearty P (1989) History of Stage 5 sea level in Bermuda: review with new evidence of a brief rise to present sea level during Substage 5A. Quat Sci Rev 8:159–168

    Article  Google Scholar 

  • Valeton I (1981) Bauxites on peneplained metamorphic and magmatic rocks, on detrital sediments and on karst topography, their similarities and contrasts of genesis. In: Krishnaswamy VS (ed) Lateritisation processes (Proceedings of the international seminar on lateritisation processes, 11–14 December 1979, Trivandrum, India). Balkema, Rotterdam, pp 15–23

    Google Scholar 

  • Valeton I (1983) Palaeoenvironment of lateritic bauxites with vertical and lateral differentiation. In: Wilson RCL (ed) Residual deposits: surface related weathering processes and materials. Blackwell, London, pp 77–90

    Google Scholar 

  • van Ghent PAM, Ukkerman R (1993) The Balanta rice farming system in Guinea Bissau. In: Dent DL, van Mensvoort MEF (eds) Selected papers of the Ho Chi Minh City symposium on acid sulfate soils. ILRI Publication No. 53. ILRI, Wageningen, pp 103–112

    Google Scholar 

  • van Mensvoort MEF, Dent DL (1997) Acid sulfate soils. In: Lal R et al (eds) Methods for assessment of soil degradation. CRC Press, Boca Raton, pp 301–333

    Google Scholar 

  • Vogel JC (1980) Accuracy of the radiocarbon time-scale beyond 15000 B.P. Radiocarbon 22(2):210–218

    Article  Google Scholar 

  • Wang Y (2003) Coastal laterite profiles at Po Chue Tam, Lantau Island, Hong Kong: the origin and implication. Geomorphology 52(3/4):335–347

    Article  Google Scholar 

  • Wang J, Luo S (2002) Sulfur and its acidity in acid sulfate soil of Taishan coastal plain in southern China. Commun Soil Sci Plant Anal 33(3/4):579–586

    Article  Google Scholar 

  • Wanless HR, Parkinson RW, Tedesco LP (1994) Sea level control on stability of wetlands. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach, pp 199–223

    Google Scholar 

  • Ward WT (1977) Geomorphology and soils of the Stratford-Bairnsdale Area, East Gippsland, Victoria. CSIRO Australia Division of Soils, Soils and Land Use Series No. 57

    Google Scholar 

  • Ward WT, Grimes KG (1987) History of coastal dunes at Triangle Cliff, Fraser Island, Queensland. Aust J Earth Sci 34:325–333

    Article  Google Scholar 

  • Ward WT, McArthur WM (1983) Soil formation on coastal lands and the effects of sea-level changes. In: Division of soils, CSIRO, soils: an australian viewpoint. Academic, London, pp 101–105

    Google Scholar 

  • Washburn AL (1969) Weathering, frost action, and patterned Ground in the Mesters Vig District, northeast Greenland. Meddel Om Gronland 176(4):303 p

    Google Scholar 

  • Washburn AL (1973) Periglacial processes and environments. Arnold, London

    Google Scholar 

  • Yaalon DH (1971) Soil-forming processes in time and space. In: Yaalon DH (ed) Paleopedology. Israel University Press, Jerusalem, pp 29–40

    Google Scholar 

  • Yan Q, Xu S, Shao X (1989) Holocene cheniers in the Yangtze Delta, China. Mar Geol 90:337–343

    Article  Google Scholar 

  • Yatsko A (2000) Of marine terraces and sand dunes: the landscape of San Clemente Island. Pac Coast Archaeol Soc Q 36(1):26–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Finkl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Finkl, C.W. (2018). Coastal Soils. In: Finkl, C., Makowski, C. (eds) Encyclopedia of Coastal Science . Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-48657-4_85-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48657-4_85-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48657-4

  • Online ISBN: 978-3-319-48657-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics