Skip to main content

Geochronology

  • Living reference work entry
  • First Online:

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definitions

In coastal research, the terms “geochronology ” or “geochronostratigraphy ” are used to determine time scales for coastal processes and coastal evolution utilizing relative stratigraphic techniques (morpho-, pedo-, bio-, lithostratigraphy) and absolute dating methods, whereas relative and absolute approaches complement each other.

Dating Methods

In the last 30 years, applications of the numerical (“absolute”) dating of coastal structures, sediments, and processes were improved, new dating methods were established, and the precision and accuracy of existing age determination methods were considerably increased. Numerous papers and some books describe dating techniques in Quaternary sciences in detail (e.g., Rink and Thompson 2015; Malainey 2011; Walker 2005).

Mass spectrometric radiocarbon, thorium-230/uranium-234 isotope (Th/U), electron spin resonance (ESR), optically stimulated luminescence (OSL), and terrestrial cosmogenic nuclide (TCN) dating are the most commonly used...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Aitken MJ (1998) An introduction to optical dating: the dating of quaternary sediments by the use of photon-stimulated luminescence. Oxford University Press, Oxford

    Google Scholar 

  • Bard E, Fairbanks RG, Hamelin B (1992) How accurate are the U-Th ages obtained by mass spectrometry on coral terraces. In: Kukla GJ, Went E (eds) Start of a glacial. Springer, Berlin, pp 15–22

    Chapter  Google Scholar 

  • Binnie A, Dunai T, Binnie S, Victor P, Gonzalez G, Bolten A (2016) Accelerated late quaternary uplift revealed by 10Be exposure dating of marine terraces, Mejillones Peninsula, northern Chile. Quat Geochronol 36:12–27

    Article  Google Scholar 

  • Blackwell BAB, Skinner AR, Blickstein JIB, Montoya AC, Florentin JA, Baboumian SM, Ahmed IJ, Deely AE (2016) ESR in the 21th century: from buried valleys and deserts to the deep ocean and tectonic uplift. Earth Sci Rev 158:125–159

    Article  Google Scholar 

  • Brill D, Klasen N, Brückner H, Jankaew K, Kelletat D, Scheffers A, Scheffers S (2012) Local inundation distances and regional tsunami recurrence in the Indian Ocean inferred from luminescence dating of sandy deposits in Thailand. Nat Hazards Earth Syst Sci 12:2177–2192

    Article  Google Scholar 

  • Brill D, Jankaew K, Brückner H (2015) Holocene evolution of Phra Thong’s beach-ridge plain (Thailand) – chronology, processes and driving factors. Geomorphology 245:117–134

    Article  Google Scholar 

  • Brill D, May SM, Shah-Hosseini M, Rufer D, Schmidt C, Engel M (2017) Luminescence dating of cyclone-induced washover fans at point Lefroy (NW Australia). Quat Geochronol 41:134–150. https://doi.org/10.1016/j.quageo.2017.03.004

    Article  Google Scholar 

  • Brückner H (1980) Marine Terrassen in Süditalien. Eine quartärmorphologische Studie über das Küstentiefland von Metapont, Düsseldorfer Geographische Schriften, vol 14. Düsseldorf University, Düsseldorf

    Google Scholar 

  • Brückner H (1997) Coastal changes in western Turkey – rapid delta progradation in historical times. In: Briand F, Maldonado A (eds) Transformations and evolution of the Mediterranean coastline, CIESM science series, vol 3, pp 63–74. (Bulletin de l'Institut océanographique, numéro spécial 18. Musée océanographique, Monaco)

    Google Scholar 

  • Brückner H (2003) Delta evolution and culture – aspects of geoarchaeological research in Miletos and Priene. In: Wagner GA, Pernicka E, Uerpmann E (eds) Troia and the Troad. Scientific approaches, Springer series on natural sciences in archaeology. Springer, Berlin/New York, pp 121–144

    Chapter  Google Scholar 

  • Brückner H, Schellmann G (2003) Late Pleistocene and Holocene shorelines of Andréeland (Spitsbergen, Svalbård) – geomorphological evidences and Palaeo-oceanographic consequences. J Coast Res 19:971–982

    Google Scholar 

  • Brückner H, Schellmann G, van der Borg K (2002) Uplifted beach ridges in northern Spitsbergen as indicators for Glacio-isostasy and Palaeo-oceanography. Z Geomorphol 46:309–336

    Article  Google Scholar 

  • Calvo-Rathert M (2015) Magnetic chronology. In: Rink WJ, Thompson JW (eds) Encyclopedia of scientific dating methods. Springer, Dordrecht, pp 500–506

    Chapter  Google Scholar 

  • Demarchi B, Collins M (2015) Amino acid racemization dating. In: Rink WJ, Thompson JW (eds) Encyclopedia of scientific dating methods. Springer, Dordrecht, pp 13–26

    Chapter  Google Scholar 

  • Dunai T (2010) Cosmogenic nuclides. Principles, concepts and applications in the earth surface sciences. Cambridge University Press, Cambridge, p 187

    Book  Google Scholar 

  • Edwards RL, Gallup CD, Cheng H (2003) Uranium-series dating of marine and lacustrine carbonates. Rev Mineral Geochem 52:363–405

    Article  Google Scholar 

  • Forman SL, Lubinski DJ, Ingólfsson Ó, Zeeberg JJ, Snyder JA, Siegert MJ, Matishov GG (2004) A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, Northern Eurasia. Quat Sci Rev 23:1391–1434

    Article  Google Scholar 

  • Garces M (2015) Magnetostratigraphic dating. In: Rink WJ, Thompson JW (eds) Encyclopedia of scientific dating methods. Springer, Dordrecht, pp 507–517

    Chapter  Google Scholar 

  • Gehrels WR (1999) Middle and late Holocene sea-level changes in eastern Maine reconstructed from foraminiferal saltmarsh stratigraphy and AMS 14C dates on basal peat. Quat Res 52:350–359

    Article  Google Scholar 

  • Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20:1475–1560

    Article  Google Scholar 

  • Hambach U, Rolf CH, Schnepp E (2008) Magnetic dating of quaternary sediments, volcanites and archaeological materials: an overview. Eiszeitalter und Gegenwart, Quat Sci J 57:25–51

    Google Scholar 

  • Huntley D, Clague J (1996) Dating of tsunami-laid sands. Quat Res 46:127–140

    Article  Google Scholar 

  • Jacobs Z (2008) Luminescence chronologies for coastal and marine sediments. Boreas 37:508–535

    Article  Google Scholar 

  • Jovane L, Hinnov L, Housen BA, Herrero-Barvera E (2013) Magnetic methods and the timing of geological processes, Geological Society, London, Special Publications, vol 373. Geological Society of London, London, pp 1–12

    Google Scholar 

  • Kaufman A, Broecker WS, Ku TL, Thurber DL (1971) The status of U-series methods of mollusc dating. Geochim Cosmochim Acta 35:1155–1183

    Article  Google Scholar 

  • Kemp AC, Horton BP, Nikitina D, Vane CH, Potapova M, Weber-Bruya E, Culver SJ, Repkina T, Hill DF (2017) The distribution and utility of sea-level indicators in Eurasian sub-Arctic salt marshes (White Sea, Russia). Boreas 46:562–584

    Article  Google Scholar 

  • Lamothe M (2016) Luminescence dating of interglacial coastal depositional systems: recent developments and future avenues of research. Quat Sci Rev 145:1–27

    Article  Google Scholar 

  • Madsen AT, Murray AS, Andersen TJ, Pejrup M, Breuning-Madsen H (2005) Optically stimulated luminescence dating of young estuarine sediments: a comparison with 210Pb and 137Cs dating. Mar Geol 214:251–268

    Article  Google Scholar 

  • Malainey ME (2011) A consumer’s guide to archaeological science. Analytical techniques. Springer, New York

    Book  Google Scholar 

  • May SM, Brill D, Engel M, Scheffers A, Pint A, Opitz S, Wennrich V, Squire P, Kelletat D, Brückner H (2015) Traces of historical tropical cyclones and tsunamis in the Ashburton Delta (NW Australia). Sedimentology 62:1546–1572

    Article  Google Scholar 

  • Murray AS, Wintle A (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat Meas 32:57–73

    Article  Google Scholar 

  • Perg LA, Anderson RS, Finkel RC (2001) Use of a new 10Be and 26Al inventory method to date marine terraces, Santa Cruz, California, USA. Geology 29:879–882

    Article  Google Scholar 

  • Pirazzoli P, Radtke U, Hantoro WS, Jouannic C, Hoang CT, Causse C, Borel-Best M (1991) Quaternary raised coral-reef terraces on Sumba island, Indonesia. Science 252:1834–1836

    Article  Google Scholar 

  • Potter E-K, Esat TM, Schellmann G, Radtke U, Lambeck K, McCulloch MT (2004) Suborbital-period sea-level oscillations during marine isotope substages 5a and 5c. Earth Planet Sci Lett 225(1–2):191–204

    Article  Google Scholar 

  • Preusser F, Degering D, Fuchs M, Hilgers A, Kadereit A, Klasen N, Krbetschek M, Richter D, Spencer QG (2008) Luminescence dating: basics, methods and applications. Eiszeitalter und Gegenwart, Quat Sci J 57:95–149

    Google Scholar 

  • Radtke U, Schellmann G (2006) Uplift history along the Clermont nose traverse on the west coast of Barbados during the last 500,000 years – implications for paleo-sea level reconstructions. J Coast Res 22:350–356

    Article  Google Scholar 

  • Ramalho RS, Winckler G, Madeira J, Helffrich GR, Hipólito AR, Quartau R, Adena K, Schaefer JM (2015) Hazard potential of volcanic flank collapses raised by new megatsunami evidence. Sci Adv 1:e1500456

    Article  Google Scholar 

  • Regard V, Dewez T, Bourles DL, Anderson RS, Duperret A, Costa S, Leanni L, Lasseur E, Pedoja K, Maillet GM (2012) Late Holocene seacliff retreat recorded by 10Be profiles across a coastal platform: theory and example from the English Channel. Quat Geochronol 11:87–97

    Article  Google Scholar 

  • Reimann T, Naumann M, Tsukamoto T, Frechen M (2010) Luminescence dating of coastal sediments from the Baltic Sea coastal barrier-spit Darss–Zingst, NE Germany. Geomorphology 122:264–273

    Article  Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) Intcal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  • Rink WJ, Thompson JW (eds) (2015) Encyclopedia of scientific dating methods. Springer, Dordrecht

    Google Scholar 

  • Rixhon G, May SM, Engel M, Mechernich S, Schroeder-Ritzrau A, Frank N, Fohlmeister J, Boulvain F, Dunai T, Brückner H (2017) Multiple dating approach (14C, 230Th/U and 36Cl) of tsunami-transported reef-top boulders on Bonaire (Leeward Antilles) – current research and challenges. Mar Geol. https://doi.org/10.1016/j.margeo.2017.03.007

  • Sato T, Nakamura N, Goto K, Kumagai Y, Nagahama H, Minoura K (2014) Paleomagnetism reveals the emplacement age of tsunamigenic coral boulders on Ishigaki Island, Japan. Geology 45:339–342

    Google Scholar 

  • Schellmann G, Kelletat D (2001) Chronostratigraphische Untersuchungen litoraler und äolischer Formen und Ablagerungen an der Südküste von Zypern mittels ESR – Altersbestimmungen an Mollusken- und Landschneckenschalen, Essener Geographische Arbeiten, vol 32. Essen University, Essen, pp 75–98

    Google Scholar 

  • Schellmann G, Radtke U (1999) Problems encountered in the determination of dose and dose rate in ESR dating of mollusc shells. Quat Sci Rev 18:1515–1527

    Article  Google Scholar 

  • Schellmann G, Radtke U (2000) ESR dating stratigraphically well-constrained marine terraces along the Patagonian Atlantic coast (Argentina). Quat Int 68–71:261–273

    Article  Google Scholar 

  • Schellmann G, Radtke U (2001) Progress in ESR dating of Pleistocene corals – an approach for DE determination. Quat Sci Rev 20:1015–1020

    Article  Google Scholar 

  • Schellmann G, Radtke U (2004a) A revised morpho- and chronostratigraphy of late and middle Pleistocene coral reef terraces on southern Barbados (West Indies). Earth Sci Rev 64:157–187

    Article  Google Scholar 

  • Schellmann G, Radtke U (2004b) The marine quaternary of Barbados. Kölner Geographische Schriften 81:137 pp

    Google Scholar 

  • Schellmann G, Radtke U (2015) Electron spin resonance (ESR) dating of coral. In: Rink JW, Thompson JW (eds) Encyclopedia of scientific dating methods. Springer, Dordrecht, pp 234–239

    Chapter  Google Scholar 

  • Schellmann G, Radtke U, Potter E-K, Esat TM, McCulloch MT (2004) Comparison of ESR and TIMS U/Th dating of marine isotope stage (MIS) 5e, 5c, and 5a coral from Barbados – implications for palaeo sea-level changes in the Caribbean. Quat Int 120:41–50

    Article  Google Scholar 

  • Schellmann G, Beerten K, Radtke U (2008) Electron spin resonance (ESR) dating of quaternary materials. Eiszeitalter und Gegenwart, Quat Sci J 57:150–178

    Google Scholar 

  • Simms AR, DeWitt R, Kouremenos P, Drewrey AM (2011) A new approach to reconstructing sea levels in Antarctica using optically stimulated luminescence of cobble surfaces. Quat Geochronol 6:50–60

    Article  Google Scholar 

  • Singer BS (2014) A quaternary geomagnetic instability time scale. Quat Geochronol 21:29–52

    Article  Google Scholar 

  • Spooner PT, Chen T, Robinson LF, Coath CD (2016) Rapid uranium-series age screening of carbonates by laser ablation mass spectrometry. Quat Geochronol 31:28–39

    Article  Google Scholar 

  • Stirling CH (2015) Carbonates, marine carbonates (U-series). In: Rink WJ, Thompson JW (eds) Encyclopedia of scientific dating methods. Springer, Dordrecht, pp 136–141

    Chapter  Google Scholar 

  • Thomsen KJ, Murray AS, Jain M, Bøtter-Jensen L (2008) Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiat Meas 43:1474–1486

    Article  Google Scholar 

  • Walker M (2005) Quaternary dating methods. Wiley, Chichester

    Google Scholar 

  • Wang XL, Wintle AG, Lu YC (2006) Thermally transferred luminescence in fine-grained quartz from Chinese loess: basic observations. Radiat Meas 41:649–658

    Article  Google Scholar 

  • Wehmiller JF (2013) United States quaternary coastal sequences and molluscan racemization geochronology – what have they meant for each other over the past 45 years? Quat Geochronol 16:3–20

    Article  Google Scholar 

  • Zander A, Degering D, Preusser F, Kasoer HU, Brückner H (2007) Optically stimulated luminescence dating of sublittoral and intertidal sediments from Dubai, UAE: radioactive disequilibria in the uranium decay series. Quat Geochronol 2:123–128

    Article  Google Scholar 

  • Zhao J, Collins LB (2011) Uranium series dating. In: Hopley D (ed) Encyclopedia of modern coral reefs. Springer, Dordrecht, pp 1128–1132

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Schellmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Schellmann, G., Brückner, H., Brill, D. (2018). Geochronology. In: Finkl, C., Makowski, C. (eds) Encyclopedia of Coastal Science . Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-48657-4_147-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48657-4_147-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48657-4

  • Online ISBN: 978-3-319-48657-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics