Skip to main content

Degradation of Volatile Organic Compounds with Catalysts-Containing Zeolite and Ordered Mesoporous Silica

  • Living reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

This chapter will show the general concepts of catalytic systems applied to reduction of atmospheric pollutants. The catalytic oxidation of volatile organic compounds (VOCs) is considered the most efficient strategy for the degradation to CO2 and H2O using low energy costs without creating further toxic by-products. The used catalysts are noble or transition metals, which are supported on matrices with high surface area, which play a key role to decrease the amount of expensive noble metals and contribute to the performance of the catalytic system. Zeolites and ordered mesoporous silica materials are a class of porous materials extensively used as catalysts and supports due to their unique properties such as high surface area, well-defined pores, and morphological control. Here, the general approaches about catalytic oxidation of VOCs combined with zeolite and ordered mesoporous silica as supports are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Khan FI, Kr Ghoshal A (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13:527–545. https://doi.org/10.1016/S0950-4230(00)00007-3

    Article  Google Scholar 

  2. da Silva AGM, Fajardo HV, Balzer R, Probst LFD, Lovón ASP, Lovón-Quintana JJ, Valença GP, Schreine WH, Robles-Dutenhefner PA (2015) Versatile and efficient catalysts for energy and environmental processes: mesoporous silica containing Au, Pd and Au-Pd. J Power Sources 285:460–468. https://doi.org/10.1016/j.jpowsour.2015.03.066

    Article  Google Scholar 

  3. Weitkamp J (2000) Zeolites and catalysis. Solid State Ionics 131:175–188. https://doi.org/10.1016/S0167-2738(00)00632-9

    Article  Google Scholar 

  4. Moteki T, Murakami Y, Noda S, Maruyama S, Okubo T (2011) Zeolite surface as a catalyst support material for synthesis of single-walled carbon nanotubes. J Phys Chem C 115:24231–24237. https://doi.org/10.1021/jp207930m

    Article  Google Scholar 

  5. Yoshitake H, Yokoi T, Tatsumi T (2002) Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1. Chem Mater 14:4603–4610. https://doi.org/10.1021/cm0202355

    Article  Google Scholar 

  6. Lee C-K, Liu S-S, Juang L-C, Wang C-C, Lin K-S, Lyu M-D (2007) Application of MCM-41 for dyes removal from wastewater. J Hazard Mater 147:997–1005. https://doi.org/10.1016/j.jhazmat.2007.01.130

    Article  Google Scholar 

  7. Matlahov I, Geiger Y, Goobes G (2014) Trapping RNase A on MCM41 pores: effects on structure stability, product inhibition and overall enzymatic activity. Phys Chem Chem Phys 16:9031–9038. https://doi.org/10.1039/C3CP55520H

    Article  Google Scholar 

  8. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KWS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  9. Payra P, Dutta PK (2003) Zeolites: a primer. In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of zeolite science and technology, vol 2. Marcel Dekker Inc, New York, pp 1–1910

    Google Scholar 

  10. Cronstedt AF (1756). Kong Vet Acad Handlingar 17:120

    Google Scholar 

  11. IZA - International Zeolite Association. http://www.iza-structure.org, Accessed 28 July 2017

  12. Gobeltz-Hautecoeur N, Demortier A, Lede B, Lelieur JP, Duhayon C (2002) Occupancy of the sodalite cages in the blue ultramarine pigments. Inorg Chem 41:2848–2854. https://doi.org/10.1021/ic010822c

    Article  Google Scholar 

  13. García-Pérez E, Dubbeldam D, Maesen TLM, Calero S (2006) Influence of cation Na/Ca ratio on adsorption in LTA 5A: a systematic molecular simulation study of alkane chain length. J Phys Chem B 110:23968–23976. https://doi.org/10.1021/jp064971y

    Article  Google Scholar 

  14. Jaramillo E, Chandross M (2004) Adsorption of small molecules in LTA zeolites. 1. NH3, CO2, and H2O in zeolite 4A. J Phys Chem B 108:20155–20159. https://doi.org/10.1021/jp048078f

    Article  Google Scholar 

  15. Zheng H, Zhao L, Ji J, Gao J, Xu C, Luck F (2015) Unraveling the adsorption mechanism of mono- and Diaromatics in Faujasite zeolite. ACS Appl Mater Interfaces 7:10190–10200. https://doi.org/10.1021/acsami.5b00399

    Article  Google Scholar 

  16. Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82:1–78. https://doi.org/10.1016/j.micromeso.2005.02.016

    Article  Google Scholar 

  17. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  Google Scholar 

  18. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843. https://doi.org/10.1021/ja00053a020

    Article  Google Scholar 

  19. Roth WJ, Vartuli JC (2005) Synthesis of mesoporous molecular sieves. In: Ĉejka J, Hv B (eds) Studies in surface science and catalysis, vol 157. Elsevier, Amsterdam, pp 91–110. https://doi.org/10.1016/S0167-2991(05)80007-2

    Google Scholar 

  20. Corma A, Grande MS, Gonzalez-Alfaro V, Orchilles AV (1996) Cracking activity and hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY zeolite. J Catal 159(2):375–382. https://doi.org/10.1006/jcat.1996.0100

    Article  Google Scholar 

  21. Vallet-Regi M, Rámila A, Del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13(2):308–311. https://doi.org/10.1021/cm0011559

    Article  Google Scholar 

  22. Qu F, Zhu G, Huang S, Li S, Qiu S (2006) Effective controlled release of captopril by Silylation of mesoporous MCM-41. ChemPhysChem 7(2):400–406. https://doi.org/10.1002/cphc.200500294

    Article  Google Scholar 

  23. Huo Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF (1994) Organization of Organic Molecules with inorganic molecular species into nanocomposite Biphase arrays. Chem Mater 6(8):1176–1191. https://doi.org/10.1021/cm00044a016

    Article  Google Scholar 

  24. Huo Q, Leon R, Petroff PM, Stucky GD (1995) Mesostructure design with Gemini surfactants: Supercage formation in a three-dimensional hexagonal Array. Science 268(5215):1324–1327. https://doi.org/10.1126/science.268.5215.1324

    Article  Google Scholar 

  25. Tanev PT, Pinnavaia TJ (1995) A neutral templating route to mesoporous molecular sieves. Science 267(5199):865–867. https://doi.org/10.1126/science.267.5199.865

    Article  Google Scholar 

  26. Meynen V, Cool P, Vansant EF (2009) Verified syntheses of mesoporous materials. Microporous Mesoporous Mater 125:170–223. https://doi.org/10.1016/j.micromeso.2009.03.046

    Article  Google Scholar 

  27. Yang SW, Kondo JN, Hayashi K, Hirano M, Domen K, Hosono H (2004) Partial oxidation of methane to syngas over promoted C12A7. Appl Catal A Gen 277:239–246. https://doi.org/10.1016/j.apcata.2004.09.030

    Article  Google Scholar 

  28. Yang ZW, Kang QX, Ma HC, Li CL, Lei ZQ (2004) Oxidation of cyclohexene by dendritic PAMAMSA-Mn(II) complexes. J Mol Catal A: Chem 213:169–176. https://doi.org/10.1016/j.molcata.2003.12.016

    Article  Google Scholar 

  29. Zabihi M, Khorasheh F, Shayegan J (2015) Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air. RSC Adv 5:5107–5122. https://doi.org/10.1039/c4ra14430a

    Article  Google Scholar 

  30. Zabihi M, Khorasheh F, Shayegan J (2015) Studies on the catalyst preparation methods and kinetic behavior of supported cobalt catalysts for the complete oxidation of cyclohexane. React Kinet Mech Catal 114:611–628. https://doi.org/10.1007/s11144-014-0824-x

    Article  Google Scholar 

  31. Zabihi M, Shayegan J, Fahimirad M, Khorasheh F (2015) Preparation, characterization and kinetic behavior of supported copper oxide catalysts on almond shell-based activated carbon for oxidation of toluene in air. J Porous Mater 22:101–118. https://doi.org/10.1007/s10934-014-9877-5

    Article  Google Scholar 

  32. Becker L, Förster H (1997) Investigations of coke deposits formed during deep oxidation of benzene over Pd and cu exchanged Y-type zeolites. Appl Catal A Gen 153:31–41. https://doi.org/10.1016/S0926-860X(96)00344-4

    Article  Google Scholar 

  33. Becker L, Förster H (1998) Oxidative decomposition of benzene and its methyl derivatives catalyzed by copper and palladium ion-exchanged Y-type zeolites. Appl Catal B Environ 17:43–49. https://doi.org/10.1016/S0926-3373(97)00102-1

    Article  Google Scholar 

  34. Dégé P, Pinard L, Magnoux P, Guisnet M (2001) Catalytic oxidation of volatile organic compounds (VOCs). Oxidation of o-xylene over Pd and Pt/HFAU catalysts. C R Acad Sci Ser IIc: Chim 4:41–47. https://doi.org/10.1016/S1387-1609(00)01182-8

    Google Scholar 

  35. Anisia KS, Kumar A (2007) Oxidation of cyclohexane with molecular oxygen in presence of characterized macrocyclic heteronuclear FeCu complex catalyst ionically bonded to zirconium pillared montmorillonite clay. J Mol Catal A: Chem 271:164–179. https://doi.org/10.1016/j.molcata.2007.02.045

    Article  Google Scholar 

  36. Aouissi A (2010) Transformation of n-heptane by Bronsted acidic sites over 12-Tungstosilicic acid. Asian J Chem 22:4924–4930

    Google Scholar 

  37. Rodrigues TSDS, Anderson GM, Gonçalves MC, Fajardo HV, Balzer R, Probst LFD, Camargo PHC (2015) AgPt hollow Nanodendrites: synthesis and uniform dispersion over SiO 2 support for catalytic applications. ChemNanoMat 1:46–51

    Article  Google Scholar 

  38. Choudary BM, Lakshmi Kantam M, Mahender Reddy N, Koteswara Rao K, Haritha Y, Bhaskar V, Figueras F, Tuel A (1999) Hydrogenation of acetylenics by Pd-exchanged mesoporous materials. Appl Catal A Gen 181:139–144. https://doi.org/10.1016/S0926-860X(98)00390-1

    Article  Google Scholar 

  39. Tsoncheva T, Issa G, Blasco T, Dimitrov M, Popova M, Hernández S, Kovacheva D, Atanasova G, Nieto JML (2013) Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica. Appl Catal A Gen 453:1–12. https://doi.org/10.1016/j.apcata.2012.12.007

    Article  Google Scholar 

  40. Yan ZX, Wei W, Xie JM, Meng SC, Lu X, Zhu JJ (2013) An ion exchange route to produce WO3 nanobars as Pt electrocatalyst promoter for oxygen reduction reaction. J Power Sources 222:218–224. https://doi.org/10.1016/j.jpowsour.2012.08.070

    Article  Google Scholar 

  41. Tuna P, Brandin J (2013) Selective catalytic oxidation of ammonia by nitrogen oxides in a model synthesis gas. Fuel 105:331–337. https://doi.org/10.1016/j.fuel.2012.08.025

    Article  Google Scholar 

  42. XD W, WC Y, Si ZC, Weng D (2013) Chemical deactivation of V2O5-WO3/TiO2 SCR catalyst by combined effect of potassium and chloride. Front Env Sci Eng 7:420–427. https://doi.org/10.1007/s11783-013-0489-0

    Article  Google Scholar 

  43. Todorova S, Naydenov A, Kolev H, Holgado JP, Ivanov G, Kadinov G, Caballero A (2012) Mechanism of complete n-hexane oxidation on silica supported cobalt and manganese catalysts. Appl Catal A Gen 413:43–51. https://doi.org/10.1016/j.apcata.2011.10.041

    Article  Google Scholar 

  44. Menezo JC, Riviere J, Barbier J (1993) Effect of the doping of a metal-oxide by platinum on its oxidizing properties. React Kinet Catal Lett 49:293–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Joel Schwanke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schwanke, A.J., Balzer, R., Pergher, S. (2018). Degradation of Volatile Organic Compounds with Catalysts-Containing Zeolite and Ordered Mesoporous Silica. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_71-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_71-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics