Advertisement

Hydrogen Storage Alloys: Types and Characteristics

  • Amal E. Nassar
  • Eman E. Nassar
  • Mona A. Younis
Living reference work entry

Abstract

Within a few years, hydrogen is expected to play a major role as the source of power in vehicles. Several research efforts are being spent in order to find the suitable alloys to storage and use it in the portable devices. Storage of the hydrogen needs metallic materials that have the ability to absorb and desorb the hydrogen. In this chapter, we will discuss the characteristics of different types of alloys that are used in the hydrogen storage; also, we will show the suitable industrial applications for each alloy type.

References

  1. 1.
    Dincer I, Midilli A, Kucuk H (2014) Progress in exergy energy and the environment, 1st edn. Springer, ChamGoogle Scholar
  2. 2.
    Management Association IR (2016) Renewable and alternative energy: concepts, methodologies tools and applications concepts methodologies tools and applications. IGI Global, HersheyGoogle Scholar
  3. 3.
    Soni SK (2007) Microbes. A source of energy for 21st century. New India Publishing, Science, New DelhiGoogle Scholar
  4. 4.
    Kunowsky M, Marco-Lózar JP, Linares-Solano A (2013) Material demands for storage technologies in a hydrogen economy. J Renew Energy.  https://doi.org/10.1155/2013/878329
  5. 5.
    Sakintunaa B, Farida Lamari-Darkrimb MH (2007) Review metal hydride materials for solid hydrogen storage a review. Int J Hydrog Energy 32:1121–1140CrossRefGoogle Scholar
  6. 6.
    Zuttel A (2003) Materials for hydrogen storage. Mater Today 6:24–33.  https://doi.org/10.1016/S1369-7021(03)00922-2 CrossRefGoogle Scholar
  7. 7.
    Andreasen A (2004) Predicting formation enthalpies of metal hydrides. Natl Lab 6:10Google Scholar
  8. 8.
    Zhu M, Wang H, Ouyang LZZMQ (2006) Composite structure and hydrogen storage properties in Mg-based alloys. Int J Hydrog Energy 31:251–257CrossRefGoogle Scholar
  9. 9.
    Zaluska A, Zaluski L, Ström-Olsen JO (2001) Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl Phys A Mater Sci Process 72:157–165CrossRefGoogle Scholar
  10. 10.
    Zaluski L, Zalluska A, Ström-Olsen JO (1997) Nanocrystalline metal hydrides. J Alloys Compd 253–254:70–79CrossRefGoogle Scholar
  11. 11.
    Imamura H, Masanari K, Kusuhara M, Katsumoto H, Sumi T, Sakata Y (2005) High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball milling. J Alloys Compd 86:211–216CrossRefGoogle Scholar
  12. 12.
    Xu X, Song C (2006) Improving hydrogen storage/release properties of magnesium with nano-sized metal catalyst measured by tapered element oscillating microbalance. Appl Catal 300:130–138CrossRefGoogle Scholar
  13. 13.
    Polanski M, Bystrzycki J, Plocinski T (2008) The effect of milling conditions on microstructure and hydrogen absorption/desorption properties of magnesium hydride (MgH2) without and with Cr2O3 nanoparticles. Int J Hydrog Energy 33:1859–1867CrossRefGoogle Scholar
  14. 14.
    Vijay R, Sundaresan R, Maiya MP, Murthy SS (2007) Application of nanostructured Mg-x wt% MmNi5 (x=10–70) composites in a hydrogen storage device. Int J Hydrog Energy 32:2390–2399CrossRefGoogle Scholar
  15. 15.
    Gennari F, Esquivel M (2008) Structural characterization and hydrogen sorption properties of nanocrystalline Mg2Ni. J Alloys Compd 459:425–432CrossRefGoogle Scholar
  16. 16.
    Kusadome Y, Ikeda K, Nakamori Y, Orimo S, Horita Z (2007) Hydrogen storage capability of MgNi2 processed by high pressure torsion. Scr Mater 57:751–753CrossRefGoogle Scholar
  17. 17.
    Shao H, Xu H, Wang Y, Li X (2004) Synthesis and hydrogen storage behavior of Mg-Co-H system at nanometer scale. J Solid State Chem 177:3626–3632CrossRefGoogle Scholar
  18. 18.
    Ranjbar A, Ismail M, Guo ZP, Yu XB, Liu HK (2010) Effects of CNTs on the hydrogen storage properties of MgH2 and MgH2-BCC composite. Int J Hydrogen 35:7821–7826CrossRefGoogle Scholar
  19. 19.
    Song MY, Kwon SN, Jean-Louis B, Park HR (2011) Enhancement of hydrogen-storage properties of Mg by reactive mechanical grinding with oxide, metallic element(s), and hydride-forming element. Ceram Int 37:897–902CrossRefGoogle Scholar
  20. 20.
    Song MY, Kwon SN, Park HR, Bobet J-L (2011) Improvement of hydriding and dehydriding rates of Mg via addition of transition elements Ni, Fe, and Ti. Int J Hydrog Energy 36:12932–12938CrossRefGoogle Scholar
  21. 21.
    Shu-ke P, Xue-zhang XIAO, Rui- juan XU, Luo LI, Fan W, Shou-quan LI, Qi-dong WANG, Li-xin (2010) Hydrogen storage behaviors and microstructure of MF3 (M=Ti, Fe)-doped magnesium hydride. Trans Nonferrous Met Soc 20:1879–1884CrossRefGoogle Scholar
  22. 22.
    Kim J-H, Kim J-H, Hwang K-T, Kang Y-M (2010) Hydrogen storage in magnesium based-composite hydride through hydriding combustion synthesis. Int J Hydrog Energy 35:9641–9645CrossRefGoogle Scholar
  23. 23.
    Song MY, Kwon SN, Park HR, Hong S-H (2011) Improvement in the hydrogen storage properties of Mg by mechanical grinding with Ni, Fe and V under H2 atmosphere. Int J Hydrog Energy 36:13587–11359CrossRefGoogle Scholar
  24. 24.
    Hong S-H, Bae J-S, Kwon SN, Song MY (2011) Hydrogen storage properties of Mg-23.5Ni-xCu prepared by rapid solidification process and crystallization heat treatment. Int J Hydrog Energy 36:2170–2176CrossRefGoogle Scholar
  25. 25.
    Zhu Y, Liu Z, Yang Y, Hao G, Li L, Cai M (2010) Hydrogen storage properties of Mg–Ni–C system hydrogen storage materials prepared by hydriding combustion synthesis and mechanical milling. Int J Hydrog Energy 35:6350–6355CrossRefGoogle Scholar
  26. 26.
    Skripnyuk VM, Rabkin E, Bendersky LA, Magrez A, Carreño-Morelli E, Estrin Y (2010) Hydrogen storage properties of as-synthesized and severely deformed magnesium – multiwall carbon nanotubes composite. Int J Hydrog Energy 35:5471–5478CrossRefGoogle Scholar
  27. 27.
    Kwon S-N, Hong S-H, Park H-R, Song M-Y (2010) Hydrogen-storage property characterization of Mg–15 wt%Ni5 wt%Fe2O3 prepared by reactive mechanical grinding. Int J Hydrog Energy 33:13055–13061CrossRefGoogle Scholar
  28. 28.
    Kalinichenka S, Röntzsch L, Riedl T, Gemming T, Weißgärber T, Kieback B (2011) Microstructure and hydrogen storage properties of melt-spun Mg–Cu–Ni–Y alloys. Int J Hydrog Energy 36:1592–1600CrossRefGoogle Scholar
  29. 29.
    Khandelwal A, Agresti F, Capurso G, Russo SL, Amedeo Maddalena S, Gialanella GP (2010) Pellets of MgH2-based composites as practical material for solid state hydrogen storage. Int J Hydrog Energy 35:3565–3571CrossRefGoogle Scholar
  30. 30.
    Zhang QA, Jiang CJ, Jiang DDL (2012) Comparative investigations on the hydrogenation characteristics and hydrogen storage kinetics of melt-spun Mg10NiR (R = La, Nd and Sm) alloys. Comparative investigations on the hydrogenation characteristics and hydrogen storage kinetics of melt -spun Mg10. Int J Hydrog Energy 37:10709–10714CrossRefGoogle Scholar
  31. 31.
    Song MY, Kwak YJ, Lee B-S, Park HR, Kim B-G (2012) Effects of Ni, Fe2O3, and CNT addition by reactive mechanical grinding on the reaction rates with H2 of Mgbased alloys. Int J Hydrog Energy 37:1531–1537CrossRefGoogle Scholar
  32. 32.
    Song MY, Kwon SN, Park HR (2012) Hydriding–dehydriding cycling behavior of magnesium–nickel–iron oxide alloy. Mater Res Bull 47:1191–1196CrossRefGoogle Scholar
  33. 33.
    Kwak YJ, Lee B-S, Park HR, Song MY (2012) Hydrogen-storage characteristics of Mg–14Ni–6Fe2O3–2CNT prepared by reactive mechanical grinding. Mater Res Bull 47:4059–4064CrossRefGoogle Scholar
  34. 34.
    Pighin SA, Capurso G, Lo Russo S, Perett HA (2012) Hydrogen sorption kinetics of magnesium hydride enhanced by the addition of Zr8Ni21 alloy. J Alloys Compd 530:111–115CrossRefGoogle Scholar
  35. 35.
    Lass EA (2012) Hydrogen storage in rapidly solidified and crystallized Mg–Ni-(Y, La) Pd alloys. Int J Hydrog Energy 37:9716–9721CrossRefGoogle Scholar
  36. 36.
    Saitoha H, Machida A, Katayama Y, Aoki K (2009) Hydrogenation of passivated aluminum with hydrogen fluid. Appl Phys Lett 94:151915CrossRefGoogle Scholar
  37. 37.
    Schmidt DL, Roberts CB, Reigler PF, Lemanski MF Jr, Schram EP (1973) Aluminum trihydride-diethyl etherate: (Etherated Alane). Inorg Synth 14:47–52Google Scholar
  38. 38.
    Lund GK Hanks JM Johnston HE (2007) Method for the production of α-Alane. United states patent No. 7, pp 238–336Google Scholar
  39. 39.
    Graetz J, Reilly J, Sandrock G Johnson J, Zhou WM, Wegrzyn J (2006) Aluminum hydride A1H3 as a hydrogen storage compound. J Alloys Compd 262–265Google Scholar
  40. 40.
    Finholat AE, Bond C, Anhis JR (1947) Lithium aluminum hydride aluminum hydride and lithium gallium hydride and some of their applications in organic and inorganic chemistry. Georg Erberjto Nes Lab Eu Niversitoyf Chicago. J Am Chem Soc 69(5):1199–1203Google Scholar
  41. 41.
    Brower FM, Matzek NE, Reigler PF, Rinn HW, Roberts CB, Schmidt DL, Snover JA, Terada K (1976) Preparation and properties of aluminum hydride. J Am Chem Soc 98:2450CrossRefGoogle Scholar
  42. 42.
    Lousada CM, Fernandes RMF, Tarakina NV, Soroka IL (2017) Synthesis of copper hydride (CuH) from CuCO3·Cu(OH)2 – a path to electrically conductive thin films of Cu. Dalt Trans 46:6533CrossRefGoogle Scholar
  43. 43.
    Simón R, Guix J, Nualart L, Surroca RM, Carbonell JM (2001) Use of several models as diagnostic and quality improvement tool: EFQM and joint commission. Rev Calid Asist Spanish 16:308–312CrossRefGoogle Scholar
  44. 44.
    Züttel A (2003) Materials for hydrogen storage. Mater Study 6:24–28Google Scholar
  45. 45.
    Young K-H, Nei J (2013) Review the current status of hydrogen storage alloy development for electrochemical applications. Materials (Basel) 6:4576–4578CrossRefGoogle Scholar
  46. 46.
    Demircan A, Demiralp M, Kaplan Y, Mat MD, Veziroglu TN (2005) Experimental and theoretical analysis of hydrogen absorption in LaNi5-H2 reactors. Int J Hydrog Energy 30:1437–1446CrossRefGoogle Scholar
  47. 47.
    Muthukumar P, Prakash MM, Srinivasa Murthy S (2005) Experiments on a metal hydride based hydrogen storage device. Int J Hydrog Energy 30:1569–1581CrossRefGoogle Scholar
  48. 48.
    Zaluski L, Zaluska A, Tessier P, Stron-Olsen JO, Schulz R (1995) Effects of relaxation on hydrogen absorption in Fe-Ti produced by ball-milling. J Alloy Compds 227:53–57CrossRefGoogle Scholar
  49. 49.
    Reilly JJ, Wiswall RH (1974) Formation and properties of iron titanium hydride. Inorg Chem 13:218–222CrossRefGoogle Scholar
  50. 50.
    Bououdina M, Grant D, Walker G (2006) Review on hydrogen absorbing materials-structure, microstructure and thermodynamic properties. Int J Hydrog Energy 13:177–182CrossRefGoogle Scholar
  51. 51.
    Young K, Huang B, Regmi RK, Lawes G, Liu Y (2010) Comparisons of metallic clusters imbedded in the surface of AB2, AB5, and A2B7 alloys. J Alloys Compd 506:831–840CrossRefGoogle Scholar
  52. 52.
    Young K, Ouchi T, Huang B (2012) Effects of annealing and stoichiometry to (Nd, Mg) (Ni, Al) 3.5 metal hydride alloys. J Power Sources 215:152–159CrossRefGoogle Scholar
  53. 53.
    Young M, Chang S, Young K, Nei J (2013) Hydrogen storage properties of ZrVxNi3.5–x (x = 0.0–0.9) metal hydride alloys. J Alloys Compd 580:S171–S174CrossRefGoogle Scholar
  54. 54.
    Young K, Young M, Chang S, Huang B (2013) Synergetic effects in electrochemical properties of ZrVxNi4.5–x (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) metal hydride alloys. J Alloys Comp 560:33–41CrossRefGoogle Scholar
  55. 55.
    Cochran JL, Hill JT (1981) The measurement of lithium hydride enrichment. IEEE Trans Nucl Sci 28:1855–1857.  https://doi.org/10.1109/TNS.1981.4331539 CrossRefGoogle Scholar
  56. 56.
    Fukai Y, Suzuki T (1986) Iron–water reaction under high pressure and its implication in the evolution of the earth. J Geophys Res 91:9222–9230CrossRefGoogle Scholar
  57. 57.
    Okuchi T (1997) Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278:1781–1784CrossRefGoogle Scholar
  58. 58.
    Badding JV, Hemley RJ, Mao HK (1991) High-pressure chemistry of hydrogen in metals: in situ study of iron hydride. Science 253:421–424CrossRefGoogle Scholar
  59. 59.
    Takahashi E, Odaka M, Higashimura K (2002) Melting temperature of FeHx up to 15 GPa, high pressure mineral physics seminar. pp 26–31. Williams, pp 44–61Google Scholar
  60. 60.
    Yagi Y, Hishinuma T (1995) Iron-hydride formed by the reaction of iron, silicate and water. J Geophys Res 22:1933–1936Google Scholar
  61. 61.
    Saxena SK, Liermann H-P, Shen G (2004) Formation of iron hydride and high-magnetite at high pressure and temperature. Phys Earth Planet Inter 146:313–317CrossRefGoogle Scholar
  62. 62.
    Hiroi T, Fukai Y, KM (2005) The phase diagram and superabundant vacancy formation in Fe–H alloys revisited. J Alloys Compd 404–406:252–255CrossRefGoogle Scholar
  63. 63.
    Tkacz M (2002) Thermodynamic properties of iron hydride. J Alloys Compd 25–28:330–332Google Scholar
  64. 64.
    Pronsato M, Brizuela G, Juan A (2003) The electronic structure of iron hydride. J Phys Chem Solids 64:593–597CrossRefGoogle Scholar
  65. 65.
    Mikhaylushkin AS (2006) Structural and magnetic properties of FeHx (x=0.25; 0.50; 0.75). AIP Conf Proc 837:161–167.  https://doi.org/10.1063/1.2213072 CrossRefGoogle Scholar
  66. 66.
    Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Amsterdam, pp 48–97Google Scholar
  67. 67.
    Fukai Y (2005) The metal-hydrogen system, vol 91. Springer, Berlin, p 145Google Scholar
  68. 68.
    Fritsch D, Winter M, Reetz MT, Sachs C, Pundt A, Kirchheim R (2001) Solubility of hydrogen in single-sized palladium clusters. Phys Rev B 64:64–73CrossRefGoogle Scholar
  69. 69.
    Levine P, Weale K (1960) The palladium + hydrogen equilibrium at high pressures and temperatures. Trans Faraday Soc 56:357CrossRefGoogle Scholar
  70. 70.
    Tripodi P, McKubre MCH, Di Gioacchino D, Violante V (2000) Temperature coefficient of resistivity at compositions approaching PdH. Phys Lett A 276:122–126CrossRefGoogle Scholar
  71. 71.
    Tripodi P, Di Gioacchino D, Vinko JD (2004) Magnetic and transport properties of PdH: intriguing superconductive observations. Braz J Phys 34:1177–1184CrossRefGoogle Scholar
  72. 72.
    Haschke JM, Allen TH (2001) Plutonium hydride, sesquioxide and monoxide monohydride: pyrophoricity and catalysis of plutonium corrosion. J Alloys Compd 320:58–71CrossRefGoogle Scholar
  73. 73.
    Hurd (1952) An introduction to the chemistry of the hydrides. Wiley, New York City, pp 140–208Google Scholar
  74. 74.
    Fitzsilmons NP, Jones W, Herley PJ (1995) Studies of copper hydride part 1. -synthesis and solid-state stability. J Chem Soc Faraday Trans 91:713–718CrossRefGoogle Scholar
  75. 75.
    Stakebake JL (1992) Kinetics for the reaction of hydrogen with plutonium powder. J Alloys Compd 187:271–283CrossRefGoogle Scholar
  76. 76.
    Rogozkin BD, Stepennova NM, Fedorov YE, Shishkov MG, Glagovskii EM, Yu Rogozhkin V, Shibarshov LI (2011) Pyrochemical method of salvaging weapons plutonium in oxide for fabricating mixed fuel for fast reactors. Atomic Energy 109:266–273CrossRefGoogle Scholar
  77. 77.
    Greis O, Haschke JM (1982) Handbook on the physics and chemistry of rare Earths, vol 5. North Holland, Amsterdam, pp 387–460Google Scholar
  78. 78.
    Haschke JM, Hodges AE III, Lucas RL (1987) Equilibrium and structural properties of the Pu-H system. J Less Common Met 133:155–166CrossRefGoogle Scholar
  79. 79.
    Bing-Yun A, Peng S, Yong G, Tao G (2013) The abnormal lattice contraction of plutonium hydrides studied by first-principles calculations. Chin Phys B 22(3):22. 37103-1-037103–6Google Scholar
  80. 80.
    Stakebake JL (2017) Kinetic studies of the reaction of plutonium hydride with oxygen. Nucl Sci Eng 78:386–392CrossRefGoogle Scholar
  81. 81.
    Holleman AF, Wiberg E, Wiberg N, Eagleson M (2001) Inorganic chemistry. Academic, San Diego, pp 240–301Google Scholar
  82. 82.
    Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806.  https://doi.org/10.1063/1.462569 CrossRefGoogle Scholar
  83. 83.
    Sawicka A, Skurski P, Simons J (2003) Inverse sodium hydride. A theoretical study. J Am Chem Soc 125:3954.  https://doi.org/10.1021/ja021136v CrossRefGoogle Scholar
  84. 84.
    Too PC, Chan GH, Tnay YL, Hirao H, Chiba S (2016) Hydride reduction by a sodium hydride-iodide composite. Angew Chemie Int Ed 55:3719–3723.  https://doi.org/10.1002/anie.201600305 CrossRefGoogle Scholar
  85. 85.
    Bickelhaupt F, Solà M, Guerra C, Baerends E, Ravenek W (2007) Highly polar bonds and the meaning of covalency and iconicity-structure and bonding of alkali metal hydride oligomers. Faraday Discuss 135:451–468CrossRefGoogle Scholar
  86. 86.
    Wu Y, Tucker J, Houk K (1991) Stereoselectivities of nucleophilic additions to cyclohexanones substituted by polar groups. Experimental investigation of reductions of trans-decalones and theoretical studies of cyclohexanone reductions. The influence of remote electrostatic effects. J Am Chem Soc 113:5018–5027CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Amal E. Nassar
    • 1
  • Eman E. Nassar
    • 1
  • Mona A. Younis
    • 1
  1. 1.Department of Mechanical EngineeringHigher Technological InstituteTenth of Ramadan CityEgypt

Personalised recommendations