Skip to main content

Application of Nanoparticle Materials in Radiation Therapy

  • Living reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Recently, studies on the application of nanoparticle materials in radiotherapy have become a very hot topic. Most of them focus on the diagnosis and treatment of cancer based on the dose and image contrast enhancement. In this chapter, the background and rationale of using nanoparticle materials in radiotherapy will be reviewed. Using heavy atom radiosensitizer in novel nanoparticle-enhanced radiotherapy such as gold nanoparticles can deliver radiation dose directly to tumor while sparing surrounding healthy tissues. As the radiosensitizer enhances the contrast of tumor in medical imaging, the accuracy of radiation beam targeting is increased. In addition, the radiosensitizer improves the dose absorption in the tumor. Given these important applications, this chapter will explore the basic studies on the nanoparticle-enhanced radiotherapy using gold nanoparticles with different sizes, shapes, and concentrations. We will look at dose enhancement through photon and electron interactions from the kilovoltage and megavoltage photon beams, and the synthesis of gold nanoparticles as well as various fabrication techniques such as the citrate reduction method will be reviewed. Focusing on the transport and delivery mechanism of nanoparticles to the cancer cell, we will explore the delivery efficiency related to the size and shape of the nanoparticle. For radiobiological effects on the nanoparticle application, different results from Monte Carlo, cell (in vitro), and preclinical (in vivo) studies will be reviewed, and find out how adding nanoparticle materials to the tumor can enhance both the radiation dose and image contrast at the target in radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Binnig G, Rohrer H (1986) Scanning tunneling microscopy. IBM J Res Dev 30:355–369

    Google Scholar 

  2. Kroto H (1996) Symmetry, space, stars and C60, Nobel Lecture, p 45. http://nobelprize.org/nobel_prizes/chemistry/laureates/1996/kroto-lecture.html. Accessed 7 Dec 1996

  3. Chithrani DB, Jelveh S, Jalali F et al (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173:719–728

    Article  Google Scholar 

  4. Jain S, Hirst DG, O’sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85:101–113

    Article  Google Scholar 

  5. Mesbahi A (2010) A review of gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep Pract Oncol Radither 15:176–180

    Article  Google Scholar 

  6. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309

    Article  Google Scholar 

  7. Butterworth KT, McMahon SJ, Currell FJ, Prise KM (2012) Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 4:4830–4838

    Article  Google Scholar 

  8. Cho SH, Jones BL, Krishnan S (2009) The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources. Phys Med Biol 54:4889

    Article  Google Scholar 

  9. Jones BL, Krishnan S, Cho SH (2010) Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med Phys 37:3809–3816

    Article  Google Scholar 

  10. Leung MK, Chow JC, Chithrani BD, Lee MJ, Oms B, Jaffray DA (2011) Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 38:624–631

    Article  Google Scholar 

  11. McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, Schettino G, Dickson GR, Hounsell AR, O’Sullivan JM, Prise KM (2011) Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother Oncol 100:412–416

    Article  Google Scholar 

  12. Chow JCL (2016) Photon and electron interactions with gold nanoparticles: a Monte Carlo study on gold nanoparticle-enhanced radiotherapy. In: Grumezescu AM (ed) Nanobiomaterials in medical imaging: applications of nanobiomaterials. Elsevier, Amsterdam, pp 45–70

    Chapter  Google Scholar 

  13. Canadian Cancer Society’s Advisory Committee on Cancer Statistics (2016) Canadian cancer statistics 2016. Canadian Cancer Society, Toronto

    Google Scholar 

  14. Bortfeld T (2006) IMRT: a review and preview. Phys Med Biol 51:R363

    Article  Google Scholar 

  15. Palma DA, Verbakel WF, Otto K, Senan S (2010) New developments in arc radiation therapy: a review. Can Treat Rev 36:393–399

    Article  Google Scholar 

  16. Chen GT, Sharp GC, Mori S (2009) A review of image-guided radiotherapy. Radiol Phys Technol 2:1–12

    Article  Google Scholar 

  17. Jaffray D, Kupelian P, Djemil T, Macklis RM (2007) Review of image-guided radiation therapy. Expert Rev Anticancer Ther 7:89–103

    Article  Google Scholar 

  18. Kalet IJ, Paluszynski W (1990) Knowledge-based computer systems for radiotherapy planning. Am J Clin Oncol 13:344–351

    Article  Google Scholar 

  19. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253

    Article  Google Scholar 

  20. Chow JC, Seguin M, Alexander A (2005) Dosimetric effect of collimating jaws for small multileaf collimated fields. Med Phys 32:759–765

    Article  Google Scholar 

  21. Chow JC, Grigorov GN, Yazdani N (2006) SWIMRT: a graphical user interface using sliding window algorithm to construct fluence map machine file. J Appl Clin Med Phys 7:69–85

    Article  Google Scholar 

  22. Khan MI, Jiang R, Kiciak A, ur Rehman J, Afzal M, Chow JC (2016) Dosimetric and radiobiological characterizations of prostate intensity-modulated radiotherapy and volumetric-modulated arc therapy: a single-institution review of ninety cases. J Med Phys 41:162

    Article  Google Scholar 

  23. Kassis AI, Adelstein SJ, Haydock C, Sastry KS, McElvany KD, Welch MJ (1982) Lethality of auger electrons from the decay of bromine-77 in the DNA of mammalian cells. Radiat Res 90:362–373

    Article  Google Scholar 

  24. Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, Van Dyke J (1998) American Association of Physicists in Medicine radiation therapy committee task group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys 25:1773–1829

    Article  Google Scholar 

  25. Fogliata A, Vanetti E, Albers D, Brink C, Clivio A, Knöös T, Nicolini G, Cozzi L (2007) On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol 52:1363

    Article  Google Scholar 

  26. Lu L (2013) Dose calculation algorithms in external beam photon radiation therapy. Int J Can Ther Oncol 1:1–4

    Google Scholar 

  27. Rogers DW (2006) Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 51:R287

    Article  Google Scholar 

  28. Chow JC, Grigorov GN (2010) Dosimetry of a small air cavity for clinical electron beams: a Monte Carlo study. Med Dosim 35:92–100

    Article  Google Scholar 

  29. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B: Biointerfaces 79:5–18

    Article  Google Scholar 

  30. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1

    Article  Google Scholar 

  31. Lin CA, Lee CH, Hsieh JT, Wang HH, Li JK, Shen JL, Chan WH, Yeh HI, Chang WH (2009a) Review: synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges. J Med Biol Eng 29:276–283

    Google Scholar 

  32. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326

    Article  Google Scholar 

  33. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  Google Scholar 

  34. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  35. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chem Commun 7:801–802

    Article  Google Scholar 

  36. Martin MN, Basham JI, Chando P, Eah SK (2010) Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir 26:7410–7417

    Article  Google Scholar 

  37. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  Google Scholar 

  38. Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671

    Article  Google Scholar 

  39. Murugan K, Dinesh D, Kavithaa K, Paulpandi M, Ponraj T, Alsalhi MS, Devanesan S, Subramaniam J, Rajaganesh R, Wei H, Kumar S (2016) Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7). Parasitol Res 115:1085–1096

    Article  Google Scholar 

  40. Rezaei-Tavirani M, Dolat E, Hasanzadeh H, Seyyedi SS, Semnani V, Sobhi S (2013) TiO2 nanoparticle as a sensitizer drug in radiotherapy: in vitro study. Iran J Cancer Prev 6:37–44

    Google Scholar 

  41. Lin MH, Hsu TS, Yang PM, Tsai MY, Perng TP, Lin LY (2009b) Comparison of organic and inorganic germanium compounds in cellular radiosensitivity and preparation of germanium nanoparticles as a radiosensitizer. Int J Radiat Biol 85:214–226

    Article  Google Scholar 

  42. Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60:1627–1637

    Article  Google Scholar 

  43. Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M (2008) Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol 26: 612–621

    Article  Google Scholar 

  44. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  Google Scholar 

  45. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  Google Scholar 

  46. Guduru R, Khizroev S (2014) Magnetic field-controlled release of paclitaxel drug from functionalized Magnetoelectric nanoparticles. Part Part Syst Charact 31:605–611

    Article  Google Scholar 

  47. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  Google Scholar 

  48. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far. J Nanopart Res 12:2313–2333

    Article  Google Scholar 

  49. Incerti S, Baldacchino G, Bernal M, Capra R, Champion C, Francis Z, Guèye P, Mantero A, Mascialino B, Moretto P, Nieminen P (2010) The Geant4-DNA project. Int J Mod Simul Sci Comput 1:157–178

    Article  Google Scholar 

  50. Lin IC, Liang M, Liu TY, Monteiro MJ, Toth I (2012) Cellular transport pathways of polymer coated gold nanoparticles. Nanomedicine 8:8–11

    Article  Google Scholar 

  51. Chun H, Chow JCL (2016) Gold nanoparticle DNA damage in radiotherapy: a Monte Carlo study. AIMS Bioeng 3:352–361

    Article  Google Scholar 

  52. Whelan CT, Mason NJ (eds) (2006) Electron scattering: from atoms, molecules, nuclei and bulk matter. Springer Science & Business Media, Berlin/Heidelberg

    Google Scholar 

  53. Douglass M, Bezak E, Penfold S (2013) Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Med Phys 40:071710

    Article  Google Scholar 

  54. Cai Z, Pignol JP, Chattopadhyay N, Kwon YL, Lechtman E, Reilly RM (2013) Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation. Med Phys 40:114101

    Article  Google Scholar 

  55. Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH (2010) Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology 4:120–137

    Article  Google Scholar 

  56. Zhang XD, Guo ML, HY W, Sun YM, Ding YQ, Feng X, Zhang LA (2009) Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int J Nanomedicine 4:165–173

    Article  Google Scholar 

  57. Berbeco RI, Kordeck H, Ngwa W, Patel J, Sridhar S, Johnson S, Price BD, Kimmelman A, Makrigiorgos GM (2012) DNA damage enhancement from gold nanoparticles for clinical MV photon beams. Radiat Res 178:604–608

    Article  Google Scholar 

  58. Hainfeld JF, Smilowitz HM, O’Connor MJ, Dilmanian FA, Slatkin DN (2013) Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine 8:1601–1609

    Article  Google Scholar 

  59. Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HH, CL W (2008) Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumour-bearing mice. Cancer Sci 99:1479–1484

    Article  Google Scholar 

  60. Chow JC, Leung MK, Fahey S, Chithrani DB, Jaffray DA (2012a) Monte Carlo simulation on low-energy electrons from gold nanoparticle in radiotherapy. J Phy Conf Ser 341(1):012012. IOP Publishing

    Article  Google Scholar 

  61. Chow JC, Leung MK, Jaffray DA (2012b) Monte Carlo simulation on a gold nanoparticle irradiated by electron beams. Phys Med Biol 57:3323

    Article  Google Scholar 

  62. Chow JCL (2015a) Characteristics of secondary electrons from irradiated gold nanoparticle in radiotherapy. In: Aliofkhazraei M (ed) Handbook of nanoparticles. Springer International Publishing, Switzerland, pp 1–18

    Google Scholar 

  63. Chow JCL (2015b) Radiation treatment planning based on big data of previously treated plans using the Gaussian error function model. In: Proceedings: HPCS 2015, advanced computing and big data: driving competitiveness and discovery. Montreal, Quebec, p 12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Chun Lam Chow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Chow, J.C.L. (2017). Application of Nanoparticle Materials in Radiation Therapy. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_111-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_111-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics