Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford


  • Quentin Fouche
  • Damien Charabidze
  • Mathieu LihoreauEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_681-1


An aggregation refers to both the process of grouping and the resulting spatial gathering of animals.


Animal aggregations are the most basic form of social life, on top of which more elaborated social behaviors, such as cooperation and division of labor, have evolved. Aggregations are observed across the animal kingdom, from insects all the way to humans. Depending on the developmental stages of animals and the environmental conditions, aggregations can take various forms. They can count just a few individuals or several millions, involve physical contacts or only spatial proximity, be spatially stable or move, and last a few seconds or persist for a long time. Additionally, aggregations can have a stable composition or show a regular turnover of individuals.

Passive Versus Active Aggregations

Two broad types of aggregations are generally considered (Parrish and Edelstein-Keshet 1999). Passive aggregations refer to groups that develop in response to...

This is a preview of subscription content, log in to check access.


  1. Boulay, J., Aubernon, C., Ruxton, G. D., Hédouin, V., Deneubourg, J. L., & Charabidzé, D. (2019). Mixed-species aggregations in arthropods. Insect science, 26, 2–19.CrossRefGoogle Scholar
  2. Buhl, J., Sumpter, D. J., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., & Simpson, S. J. (2006). From disorder to order in marching locusts. Science, 312, 1402–1406.CrossRefGoogle Scholar
  3. Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Bonabeau, E., & Theraula, G. (2003). Self-organization in biological systems (538pp.). Princeton: Princeton University PressGoogle Scholar
  4. Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433, 513.CrossRefGoogle Scholar
  5. Krause, J., & Ruxton, G. D. (2002). Living in groups (210pp.). Oxford: Oxford University Press.Google Scholar
  6. Lihoreau, M., Clarke, I. M., Buhl, J., Sumpter, D. J., & Simpson, S. J. (2016). Collective selection of food patches in Drosophila. Journal of Experimental Biology, 219, 668–675.CrossRefGoogle Scholar
  7. Parrish, J. K., & Edelstein-Keshet, L. (1999). Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science, 284, 99–101.CrossRefGoogle Scholar
  8. Ramdya, P., Lichocki, P., Cruchet, S., Frisch, L., Tse, W., Floreano, D., & Benton, R. (2015). Mechanosensory interactions drive collective behaviour in Drosophila. Nature, 519, 233–236.CrossRefGoogle Scholar
  9. Sumpter, D. J. (2010). Collective animal behavior (312pp.). Princeton: Princeton University Press.Google Scholar
  10. Weimerskirch, H., Martin, J., Clerquin, Y., Alexandre, P., & Jiraskova, S. (2001). Energy saving in flight formation. Nature, 413, 697.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Quentin Fouche
    • 1
  • Damien Charabidze
    • 1
  • Mathieu Lihoreau
    • 2
    Email author
  1. 1.CHU Lille, EA 7367 – UTML – Unité de Taphonomie Médico-LégaleUniv. LilleLilleFrance
  2. 2.Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRSUniversity Paul SabatierToulouseFrance

Section editors and affiliations

  • Caroline Leuchtenberger
    • 1
  1. 1.Federal Institute FarroupilhaPanambiBrasil