Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Platyrrhine Sensory Systems

  • Júlio César Bicca-Marques
  • Daniel Marques Almeida Pessoa
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1857-1



Platyrrhini – primate suborder that includes all New World or Neotropical monkeys (primates naturally found in the Americas from northern Mexico to southern Brazil and northeastern Argentina). There are 173 species of platyrrhines distributed into 21 genera belonging to five families: Cebidae (capuchin monkeys and squirrel monkeys), Callitrichidae (marmosets, tamarins, and Goeldi’s monkeys), Aotidae (owl monkeys), Pitheciidae (titi monkeys, saki monkeys, cuxius, and uakaries), and Atelidae (howler monkeys, spider monkeys, woolly monkeys, and muriquis).


Sensory systems play an essential role in an organism’s perception of its surroundings, including the physical and chemical properties of its habitat as well as its conspecifics (individuals of its own species) and those individuals of other interacting species. In the case of primates (prosimians, New...

This is a preview of subscription content, log in to check access.


  1. Bicca-Marques, J. C., & Garber, P. A. (2004). Use of spatial, visual, and olfactory information during foraging in wild nocturnal and diurnal anthropoids: A field experiment comparing Aotus, Callicebus, and Saguinus. American Journal of Primatology, 62, 171–187.Google Scholar
  2. Brown, C. H., & Waser, P. M. (2017). In R. M. Quam, M. A. Ramsier, R. R. Fay, & A. N. Popper (Eds.), Primate hearing and communication (pp. 79–107). Cham: Springer.CrossRefGoogle Scholar
  3. Caine, N. G., & Weldon, P. J. (1989). Sources of stress in captivity. Biotropica, 21, 186–189.CrossRefGoogle Scholar
  4. Carvalho, L. S., Pessoa, D. M. A., Mountford, J. K., Davies, W. I. L., & Hunt, D. M. (2017). The genetic and evolutionary drives behind primate color vision. Frontiers in Ecology and Evolution, 5, 34.Google Scholar
  5. Caselli, C. B., Mennill, D. J., Bicca-Marques, J. C., & Setz, E. Z. F. (2014). Vocal behavior of black-fronted titi monkeys (Callicebus nigrifrons): acoustic properties and behavioral contexts of loud calls. American Journal of Primatology, 76, 788–800.CrossRefGoogle Scholar
  6. Caselli, C. B., Mennill, D. J., Gestich, C. C., Setz, E. Z. F., & Bicca-Marques, J. C. (2015). Playback responses of socially monogamous black-fronted titi monkeys to simulated solitary and paired intruders. American Journal of Primatology, 77, 1135–1142.CrossRefGoogle Scholar
  7. Costa, R. S., & Bicca-Marques, J. C. (2014). Owl monkeys (Aotus nigriceps and A. infulatus) follow routes instead of food-related cues during foraging in captivity. PLoS One, 9, e115188.CrossRefGoogle Scholar
  8. Dominy, N. J., Lucas, P. W., Osorio, D., & Yamashita, N. (2001). The sensory ecology of primate food perception. Evolutionary Anthropology, 10, 171–186.CrossRefGoogle Scholar
  9. Epple, G., Belcher, A. M., Küderling, I., Zeller, U., Scolnick, L., Greenfield, K. L., & Smith, A. B., III. (1993). In A. B. Rylands (Ed.), Marmosets and tamarins: Systematics, behaviour, and ecology (pp. 123–151). Oxford: Oxford University Press.Google Scholar
  10. Garber, P. A., & Hannon, B. (1993). Modeling monkeys - a comparison of computer-generated and naturally-occurring foraging pattern in 2 species of Neotropical primates. International Journal of Primatology, 14, 827–852.CrossRefGoogle Scholar
  11. Hernández-Salazar, L. T., Dominy, N. J., & Laska, M. (2015). In M. M. Kowalewski, P. A. Garber, L. Cortés-Ortiz, B. Urbani, & D. Youlatos (Eds.), Howler monkeys: Adaptive radiation, systematics, and morphology (pp. 317–336). New York: Springer.Google Scholar
  12. Heymann, E. W. (2006). Scent marking strategies of New World primates. American Journal of Primatology, 68, 650–661.CrossRefGoogle Scholar
  13. Kitchen, D. M., da Cunha, R. G. T., Holzmann, I., & de Oliveira, D. A. G. (2015). In M. M. Kowalewski, P. A. Garber, L. Cortés-Ortiz, B. Urbani, & D. Youlatos (Eds.), Howler monkeys: Adaptive radiation, systematics, and morphology (pp. 369–399). New York: Springer.Google Scholar
  14. Laska, M., Alicke, T., & Hudson, R. (1996). A study of long-term odor memory in squirrel monkeys (Saimiri sciureus). Journal of Comparative Psychology, 110, 125–130.CrossRefGoogle Scholar
  15. Laska, M., Freist, P., & Krause, S. (2007). Which senses play a role in nonhuman primate food selection? A comparison between squirrel monkeys and spider monkeys. American Journal of Primatology, 69, 282–294.CrossRefGoogle Scholar
  16. Melin, A. D., Chiou, K., Walco, E., Bergstrom, M., Kawamura, S., & Fedigan, L. (2017). Trichromacy increases fruit intake rates of wild capuchins (Cebus capucinus imitator). Proceedings of the National Academy of Sciences, 114, 10402-10407.CrossRefGoogle Scholar
  17. Melin, A. D., Fedigan, L. M., Hiramatsu, C., Sendall, C. L., & Kawamura, S. (2007). Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins (Cebus capucinus). Animal Behaviour, 73, 205–214.CrossRefGoogle Scholar
  18. Melin, A. D., Fedigan, L. M., Hiramatsu, C., & Kawamura, S. (2008). Polymorphic colour vision in white-faced capuchins (Cebus capucinus): Is there foraging niche divergence among phenotypes? Behavioral Ecology and Sociobiology, 62, 659–670.CrossRefGoogle Scholar
  19. Mollon, J. D., Bowmaker, J. K., & Jacobs, G. H. (1984). Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proceedings of the Biological Sciences, 222, 373–399.CrossRefGoogle Scholar
  20. Moreira, L. A. A., de Oliveira, D. G. R., de Sousa, M. B. C., & Pessoa, D. M. A. (2015). Parturition signaling by visual cues in female marmosets (Callithrix jacchus). PLoS One, 10, e0129319.CrossRefGoogle Scholar
  21. Morgan, K. N., & Tromborg, C. T. (2007). Sources of stress in captivity. Applied Animal Behaviour Science, 102, 262–302.CrossRefGoogle Scholar
  22. Nishimura, A., Fonseca, G. A. B., Mittermeier, R. A., Young, A. L., Strier, K. B., & Valle, C. M. C. (1988). In R. A. Mittermeier, A. B. Rylands, A. Coimbra-Filho, & G. A. B. Fonseca (Eds.), Ecology and behavior of neotropical primates (Vol. 2, pp. 577–610). Washington, DC: World Wildlife Fund.Google Scholar
  23. Pablo-Rodríguez, M., Hernández-Salazar, L. T., Aureli, F., & Schaffner, C. M. (2015). The role of sucrose and sensory systems in fruit selection and consumption of Ateles geoffroyi in Yucatan, Mexico. Journal of Tropical Ecology, 31, 213–219.CrossRefGoogle Scholar
  24. Pessoa, D. M. A., Maia, R., Ajuz, R. C. D. A., de Moraes, P. Z. P. M. R., Spyrides, M. H. C., & Pessoa, V. F. (2014). The adaptive value of primate color vision for predator detection. American Journal of Primatology, 76, 721–729.CrossRefGoogle Scholar
  25. Snowdon, C. T. (2017). In R. M. Quam, M. A. Ramsier, R. R. Fay, & A. N. Popper (Eds.), Primate hearing and communication (pp. 141–174). Cham: Springer.CrossRefGoogle Scholar
  26. Wright, P. C. (1989). The nocturnal primate niche in the New-World. Journal of Human Evolution, 18, 635–658.CrossRefGoogle Scholar
  27. Wright, P. C. (1994). In J. F. Baer, R. E. Walker, & I. Kakoma (Eds.), Aotus: The owl monkey (pp. 97–112). San Diego: Academic.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Júlio César Bicca-Marques
    • 1
  • Daniel Marques Almeida Pessoa
    • 2
  1. 1.Escola de CiênciasPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  2. 2.Department of Physiology and BehaviorUniversidade Federal do Rio Grande do NorteNatalBrazil

Section editors and affiliations

  • Valerie Dufour
    • 1
  1. 1.Dept. of Ecology, Physiology and EthologyUniversity of StrasbourgStrasbourgFrance