Skip to main content

Animal Models of Autism

  • Living reference work entry
  • First Online:
Encyclopedia of Animal Cognition and Behavior
  • 91 Accesses

List of Genes

  • CNTNAP2

  • FOXP2

  • FMR1

  • GRIN2B

  • NLGN

  • NRXN

  • SHANK2/3

Introduction

In 2016, the Center for Disease Control and Prevention estimated that about 1 in 68 children in the United States have been diagnosed with autism spectrum disorder (ASD), corresponding to approximately one million individuals under the age of 21. The prevalence of ASDs increased sharply since the 1990s, though it is unclear whether this increase can be fully explained by to a true increase in incidence, as opposed to greater diagnosis or broader diagnostic standards. One of the current criteria for diagnosis of ASDs is that the symptoms must compromise normal daily function, either in terms of occupation and school, or in the maintenance of social relationships. As such, ASDs have substantial social and financial costs, costing an estimate of $250–300 billion annually in the United States.

Effective pharmacological treatments for ASDs have remained elusive. Pharmacological interventions are used to treat comorbid...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ASD:

Autism Spectrum Disorder

CSF:

Cerebral Spinal Fluid

GABA:

γ-Aminobutyric Acid

mTOR:

Rapamycin

NHP:

Nonhuman Primate

OFC:

Orbitofrontal Cortex

OT:

Oxytocin

TD:

Typically Developing

TSC:

Tuberous Sclerosis

USV:

Ultrasonic Vocalization

vmPFC:

Ventromedial Prefrontal Cortex

References

  • Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews. Genetics, 9, 341–355.

    Article  Google Scholar 

  • Chang, S. W. C., Barter, J. W., Ebitz, R. B., Watson, K. K., & Platt, M. L. (2012). Inhaled oxytocin amplifies both vicarious reinforcement and self reinforcement in rhesus macaques (Macaca mulatta). Proceedings of the National Academy of Sciences, 109, 959–964.

    Article  Google Scholar 

  • Chang, S. W. C., Gariépy, J.-F., & Platt, M. L. (2013). Neuronal reference frames for social decisions in primate frontal cortex. Nature Neuroscience, 16, 243–250.

    Article  Google Scholar 

  • Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S., & Schultz, R. T. (2012). The social motivation theory of autism. Trends in Cognitive Sciences, 16, 231–239.

    Article  Google Scholar 

  • Ebitz, R. B., Watson, K. K., & Platt, M. L. (2013). Oxytocin blunts social vigilance in the rhesus macaque. Proceedings of the National Academy of Sciences, 110, 11630–11635.

    Article  Google Scholar 

  • Feldman, R., & Bakermans-Kranenburg, M. J. (2017). Oxytocin: A parenting hormone. Current Opinion in Psychology, 15, 13–18.

    Article  Google Scholar 

  • Gabriels, R. L., et al. (2013). Elevated repetitive behaviors are associated with lower diurnal salivary cortisol levels in autism spectrum disorder. Biological Psychology, 93, 262–268.

    Article  Google Scholar 

  • Ghazanfar, A. A., Maier, J. X., Hoffman, K. L., & Logothetis, N. K. (2005). Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. The Journal of Neuroscience, 25, 5004–5012.

    Article  Google Scholar 

  • Harms, M. B., Martin, A., & Wallace, G. L. (2010). Facial emotion recognition in autism Spectrum disorders: A review of behavioral and neuroimaging studies. Neuropsychology Review, 20, 290–322.

    Article  Google Scholar 

  • Jeste, S. S., & Geschwind, D. H. (2014). Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nature Reviews. Neurology, 10, 74–81.

    Article  Google Scholar 

  • Kazdoba, T. M., Leach, P. T., & Crawley, J. N. (2016). Behavioral phenotypes of genetic mouse models of autism. Genes, Brain, and Behavior, 15, 7–26.

    Article  Google Scholar 

  • Keverne, E. B., & Kendrick, K. M. (1992). Oxytocin facilitation of maternal behavior in sheep. Annals of the New York Academy of Sciences, 652, 83–101.

    Article  Google Scholar 

  • Klein, J. T., & Platt, M. L. (2013). Social information signaling by neurons in primate striatum. Current Biology, 23, 691–696.

    Article  Google Scholar 

  • Madrid, J. E., et al. (2017). Preference for novel faces in male infant monkeys predicts cerebrospinal fluid oxytocin concentrations later in life. Scientific Reports, 7, 12935.

    Article  Google Scholar 

  • Panaitof, S. C. (2012). A songbird animal model for dissecting the genetic bases of autism Spectrum disorder. Disease Markers, 33(5), 241–249. https://doi.org/10.3233/DMA-2012-0918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peñagarikano, O. (2017). Oxytocin in animal models of autism spectrum disorder. Developmental Neurobiology, 77, 202–213.

    Article  Google Scholar 

  • Rudebeck, P. H., & Murray, E. A. (2008). Amygdala and orbitofrontal cortex lesions differentially influence choices during object reversal learning. The Journal of Neuroscience, 28, 8338–8343.

    Article  Google Scholar 

  • Saito, A., & Nakamura, K. (2011). Oxytocin changes primate paternal tolerance to offspring in food transfer. Journal of Comparative Physiology. A, 197, 329–337.

    Article  Google Scholar 

  • Servadio, M., Vanderschuren, L. J. M. J., & Trezza, V. (2015). Modeling autism-relevant behavioral phenotypes in rats and mice: Do ‘autistic’ rodents exist? Behavioural Pharmacology, 26, 522–540.

    Article  Google Scholar 

  • Silverman, J. L., Yang, M., Lord, C., & Crawley, J. N. (2010). Behavioural phenotyping assays for mouse models of autism. Nature Reviews. Neuroscience, 11, 490–502.

    Article  Google Scholar 

  • Simpson, E. A., et al. (2017). Acute oxytocin improves memory and gaze following in male but not female nursery-reared infant macaques. Psychopharmacology, 234, 497–506.

    Article  Google Scholar 

  • Smith, A. S., Ã…gmo, A., Birnie, A. K., & French, J. A. (2010). Manipulation of the oxytocin system alters social behavior and attraction in pair-bonding primates. Callithrix penicillataHormones and Behavior, 57, 255–262.

    Google Scholar 

  • Stavropoulos, K. K. M., & Carver, L. J. (2013). Research review: Social motivation and oxytocin in autism – Implications for joint attention development and intervention. Journal of Child Psychology and Psychiatry, 54, 603–618.

    Article  Google Scholar 

  • Stevenson, R. A., et al. (2014). Multisensory temporal integration in autism Spectrum disorders. The Journal of Neuroscience, 34, 691–697.

    Article  Google Scholar 

  • Takahashi, D. Y., Fenley, A. R., & Ghazanfar, A. A. (2016). Early development of turn-taking with parents shapes vocal acoustics in infant marmoset monkeys. Philosophical Transactions of the Royal Society B, 371, 20150370.

    Article  Google Scholar 

  • Thomas, A., et al. (2009). Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology, 204, 361–373.

    Article  Google Scholar 

  • Tremblay, S., Sharika, K. M., & Platt, M. L. (2017). Social decision-making and the brain: A comparative perspective. Trends in Cognitive Sciences, 21, 265–276.

    Article  Google Scholar 

  • Tsai, P. T., et al. (2012). Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature, 488, 647–651.

    Article  Google Scholar 

  • Tsao, D. Y., Freiwald, W. A., Tootell, R. B. H., & Livingstone, M. S. (2006). A cortical region consisting entirely of face-selective cells. Science, 311, 670–674.

    Article  Google Scholar 

  • Watson, K. K., & Platt, M. L. (2012a). Social signals in primate orbitofrontal cortex. Current Biology, 22, 2268–2273.

    Article  Google Scholar 

  • Watson, K. K., & Platt, M. L. (2012b). Of mice and monkeys: Using non-human primate models to bridge mouse-and human-based investigations of autism spectrum disorders. Journal of Neurodevelopmental Disorders, 4, 21.

    Article  Google Scholar 

  • Winslow, J. T., Noble, P. L., Lyons, C. K., Sterk, S. M., & Insel, T. R. (2003). Rearing effects on cerebrospinal fluid oxytocin concentration and social buffering in rhesus monkeys. Neuropsychopharmacology, 28, 910–918.

    Article  Google Scholar 

  • Yizhar, O., et al. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 477, 171–178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karli K Watson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Watson, K.K. (2018). Animal Models of Autism. In: Vonk, J., Shackelford, T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_1531-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47829-6_1531-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47829-6

  • Online ISBN: 978-3-319-47829-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics