Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford

Individual Recognition

  • Christian C. Cely
  • Elizabeth A. Tibbetts
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_1034-1


Animal social behavior depends on recognition. There are many types of recognition, including self, kin, mate, gender, friend, offspring, predator, and prey. All recognition involves (i) cue production by the signaler, (ii) cue perception and template matching by the receiver, and (iii) a behavioral response by the receiver (Sherman et al. 1997).

Multiple definitions of individual recognition have been proposed that differ slightly in their specificity and complexity. The most common definition of individual recognition proposes that receivers discriminate a signaler from others based on the signaler’s unique characteristics and associate the unique characteristics with individual-specific information about the signaler (Tibbetts and Dale 2007) (Fig. 1). For example, king penguins ( Aptenodytes patagonicus) exhibit individual recognition because each chick has individual-specific calls (signaler’s cue). Parents learn their chick’s unique calls and respond in a unique way;...
This is a preview of subscription content, log in to check access.


  1. Aubin, T., & Jouventin, P. (1998). Cocktail-party effect in king penguin colonies. Proceedings of the Royal Society B: Biological Sciences, 265(1406), 1665–1673.  https://doi.org/10.1098/rspb.1998.0486.CrossRefPubMedCentralGoogle Scholar
  2. Barnard, C. J., & Burk, T. (1979). Dominance hierarchies and the evolution of “individual recognition”. Journal of Theoretical Biology, 81(1), 65–73.  https://doi.org/10.1016/0022-5193(79)90081-X.CrossRefPubMedGoogle Scholar
  3. Bergman, T. J. (2010). Experimental evidence for limited vocal recognition in a wild primate: Implications for the social complexity hypothesis. Proceedings. Biological Sciences/The Royal Society, 277(1696), 3045–3053.  https://doi.org/10.1098/rspb.2010.0580.CrossRefGoogle Scholar
  4. Bergman, T. J., Beehner, J. C., Cheney, D. L., & Seyfarth, R. M. (2003). Hierarchical classification by rank and kinship in baboons. Science, 302(5648), 1234–1236.  https://doi.org/10.1126/science.1087513.CrossRefPubMedGoogle Scholar
  5. Blocker, T. D., & Ophir, A. G. (2015). Social recognition in paired, but not single, male prairie voles. Animal Behaviour, 108, 1–8.  https://doi.org/10.1016/j.anbehav.2015.07.003.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boeckle, M., & Bugnyar, T. (2012). Long-term memory for affiliates in ravens. Current Biology, 22(9), 801–806.  https://doi.org/10.1016/j.cub.2012.03.023.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boyle, K. S., & Tricas, T. C. (2014). Discrimination of mates and intruders: Visual and olfactory cues for a monogamous territorial coral reef butterflyfish. Animal Behaviour, 92, 33–43.  https://doi.org/10.1016/j.anbehav.2014.03.022.CrossRefGoogle Scholar
  8. Bruck, J. N. (2013). Decades-long social memory in bottlenose dolphins. Proceedings of the Royal Society B: Biological Sciences, 280(1768).Google Scholar
  9. Charrier, I., Pitcher, B. J., & Harcourt, R. G. (2009). Vocal recognition of mothers by Australian sea lion pups: Individual signature and environmental constraints. Animal Behaviour, 78(5), 1127–1134.  https://doi.org/10.1016/j.anbehav.2009.07.032.CrossRefGoogle Scholar
  10. Cheetham, S. A., Thom, M. D., Jury, F., Ollier, W. E. R., Beynon, R. J., & Hurst, J. L. (2007). The genetic basis of individual-recognition signals in the mouse. Current Biology, 17(20), 1771–1777.  https://doi.org/10.1016/j.cub.2007.10.007.CrossRefPubMedGoogle Scholar
  11. Dale, J. (2000). Ornamental plumage does not signal male quality in red-billed queleas. Proceedings. Biological Sciences/The Royal Society, 267(1458), 2143–2149.  https://doi.org/10.1098/rspb.2000.1261.CrossRefGoogle Scholar
  12. Dale, J., Lank, D. B., & Reeve, H. K. (2001). Signaling individual identity versus quality: A model and case studies with ruffs, queleas, and house finches. The American Naturalist, 158(1), 75–86.  https://doi.org/10.1086/320861.CrossRefPubMedGoogle Scholar
  13. Draganoiu, T. I., Nagle, L., Musseau, R., & Kreutzer, M. (2006). In a songbird, the black redstart, parents use acoustic cues to discriminate between their different fledglings. Animal Behaviour, 71(5), 1039–1046.  https://doi.org/10.1016/j.anbehav.2005.06.022.CrossRefGoogle Scholar
  14. Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 22(6), 469–493.  https://doi.org/10.1016/0047-2484(92)90081-J.CrossRefGoogle Scholar
  15. Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6(5), 178–190.  https://doi.org/10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.3.CO;2-P.CrossRefGoogle Scholar
  16. Godard, R. (1991). Long-term memory of individual neighbours in a migratory songbird. Nature, 350(21 March), 228–229.CrossRefGoogle Scholar
  17. Gronenberg, W., Ash, L. E., & Tibbetts, E. A. (2007). Correlation between facial pattern recognition and brain composition in paper wasps. Brain, Behavior and Evolution, 71(1), 1–14.  https://doi.org/10.1159/000108607.CrossRefPubMedGoogle Scholar
  18. Hughes, K. A., Houde, A. E., Price, A. C., & Rodd, F. H. (2013). Mating advantage for rare males in wild guppy populations. Nature, 503(7474), 108–110.  https://doi.org/10.1038/nature12717.CrossRefPubMedGoogle Scholar
  19. Insley, S. J. (2000). Long-term vocal recognition in the northern fur seal. Nature, 406(July), 404–405.  https://doi.org/10.1038/35019064.CrossRefPubMedGoogle Scholar
  20. Johnston, R. E., & Bullock, T. A. (2001). Individual recognition by use of odours in golden hamsters: The nature of individual representations. Animal Behaviour, 61(3), 545–557.  https://doi.org/10.1006/anbe.2000.1637.CrossRefGoogle Scholar
  21. Kulahci, I. G., Drea, C. M., Rubenstein, D. I., & Ghazanfar, A. A. (2014). Individual recognition through olfactory-auditory matching in lemurs. Proceedings. Biological Sciences/The Royal Society, 281, 20140071.  https://doi.org/10.1098/rspb.2014.0071.CrossRefGoogle Scholar
  22. Lee, K., & Eli, G. (2011). Individual identity is communicated through multiple pathways in male rock hyrax ( Procavia Capensis) songs. Behavioral Ecology and Sociobiology, 65(4), 675–684.  https://doi.org/10.1007/S00265-0.CrossRefGoogle Scholar
  23. Leopold, D. A., & Rhodes, G. (2010). A comparative view of face perception. Journal of Comparative Psychology, 124(3), 233–251.  https://doi.org/10.1037/a0019460.A.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Levey, D. J., Londoño, G. A, Ungvari-Martin, J., Hiersoux, M. R., Jankowski, J. E., Poulsen, J. R., … Robinson, S. K. (2009). Urban mockingbirds quickly learn to identify individual humans. Proceedings of the National Academy of Sciences of the United States of America, 106(22), 8959–8962. doi  https://doi.org/10.1073/pnas.0811422106.CrossRefPubMedPubMedCentralGoogle Scholar
  25. McComb, K., Moss, C., Sayialel, S., & Baker, L. (2000). Unusually extensive networks of vocal recognition in African elephants. Animal Behaviour, 59(6), 1103–1109.  https://doi.org/10.1006/anbe.2000.1406.CrossRefPubMedGoogle Scholar
  26. O’Donnell, S., Bulova, S. J., DeLeon, S., Khodak, P., Miller, S., & Sulger, E. (2015). Distributed cognition and social brains: Reductions in mushroom body investment accompanied the origins of sociality in wasps (hymenoptera: Vespidae). Proceedings. Biological Sciences/The Royal Society, 282(1810), 20150791.  https://doi.org/10.1098/rspb.2015.0791.CrossRefGoogle Scholar
  27. Paz-y-Miño, G., Bond, A., Kamil, A., & Balda, R. (2004). Pinyon jays use transitive inference to predict social dominance. Nature, 430(August), 778–781.  https://doi.org/10.1038/nature02720.1.CrossRefGoogle Scholar
  28. Platt, M. L., Seyfarth, R. M., & Cheney, D. L. (2016). Adaptations for social cognition in the primate brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1687), 20150096.  https://doi.org/10.1098/rstb.2015.0096.CrossRefGoogle Scholar
  29. Schibler, F., & Manser, M. B. (2007). The irrelevance of individual discrimination in meerkat alarm calls. Animal Behaviour, 74(5), 1259–1268.  https://doi.org/10.1016/j.anbehav.2007.02.026.CrossRefGoogle Scholar
  30. Searcy, A., & Nowicki, S. (2005). The evolution of animal communication: Reliability and deception in signaling systems. Princeton: Princeton University Press. (288pp).Google Scholar
  31. Sharpe, L. L., Hill, A., & Cherry, M. I. (2013). Individual recognition in a wild cooperative mammal using contact calls. Animal Behaviour, 86(5), 893–900.  https://doi.org/10.1016/j.anbehav.2013.07.023.CrossRefGoogle Scholar
  32. Sheehan, M. J., & Nachman, M. W. (2014). Morphological and population genomic evidence that human faces have evolved to signal individual identity. Nature Communications, 5, 4800.  https://doi.org/10.1038/ncomms5800.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sheehan, M. J., & Tibbetts, E. A. (2009). Evolution of identity signals: Frequency-dependent benefits of distinctive phenotypes used for individual recognition. Evolution, 63(12), 3106–3113.  https://doi.org/10.1111/j.1558-5646.2009.00833.x.CrossRefPubMedGoogle Scholar
  34. Sheehan, M. J., & Tibbetts, E. a. (2011). Specialized face learning is associated with individual recognition in paper wasps. Science, 334(6060), 1272–1275.  https://doi.org/10.1126/science.1211334.CrossRefPubMedGoogle Scholar
  35. Sheehan, M. J., Jinn, J., & Tibbetts, E. A. (2014). Coevolution of visual signals and eye morphology in Polistes paper wasps. Biology Letters, 10(4), 20140254.  https://doi.org/10.1098/rsbl.2014.0254.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sheehan, M. J., Lee, V., Corbett-Detig, R., Bi, K., Beynon, R. J., Hurst, J. L., & Nachman, M. W. (2016). Selection on coding and regulatory variation maintains individuality in major urinary protein scent marks in wild mice. PLoS Genetics, 12(3).  https://doi.org/10.1371/journal.pgen.1005891.
  37. Sherman, P. W., Reeve, H., & Pfenning, D., et al. (1997) Recognition systems. In Behavioural Ecology: An Evolutionary Approach (Krebs, J.R. and Davies, N.B., eds), Blackwell Science, pp. 69–96.Google Scholar
  38. Steiger, S., & Müller, J. K. (2008). “True” and “untrue” individual recognition: Suggestion of a less restrictive definition. Trends in Ecology and Evolution, 23(7), 355.  https://doi.org/10.1016/j.tree.2008.01.014.CrossRefPubMedGoogle Scholar
  39. Stoddard, P. (1996). Vocal recognition in territorial passerines. In D. E. Kroodsma & E. H. Miller (Eds.), Ecology and evolution of acoustic communication in birds (pp. 356–374). Ithaca: Cornell University Press.Google Scholar
  40. Stoddard, P. K., Beecher, M. D., Loesche, P., & Campbell, S. E. (1992). Memory does not constrain individual recognition in a bird with song repertoires. Behavior, 122(3–4), 274–287.CrossRefGoogle Scholar
  41. Stoddard, M. C., Kilner, R. M., & Town, C. (2014). Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures. Nature Communications, 5(May), 4117.  https://doi.org/10.1038/ncomms5117.PubMedGoogle Scholar
  42. Thom, M. D., & Hurst, J. L. (2004). Individual recognition by scent. Annales Zoologici Fennici, 41(6), 765–787.  https://doi.org/10.1007/BF01047985.Google Scholar
  43. Tibbetts, E. A. (2002). Visual signals of individual identity in the wasp Polistes Fuscatus. Proceedings. Biological Sciences/The Royal Society, 269(July), 1423–1428.  https://doi.org/10.1098/rspb.2002.2031.CrossRefGoogle Scholar
  44. Tibbetts, E. A., & Curtis, T. R. (2007). Rearing conditions influence quality signals but not individual identity signals in Polistes wasps. Behavioral Ecology, 18(3), 602–607.  https://doi.org/10.1093/beheco/arm013.CrossRefGoogle Scholar
  45. Tibbetts, E. A., & Dale, J. (2007). Individual recognition: It is good to be different. Trends in Ecology and Evolution, 22(10), 529–537.  https://doi.org/10.1016/j.tree.2007.09.001.CrossRefPubMedGoogle Scholar
  46. Tibbetts, E. A., Mullen, S. P., & Dale, J. (2017). Signal function drives phenotypic and genetic diversity: The effects of signalling individual identity, quality or behavioural strategy. Philosophical Transactions of the Royal Society B: Biological Sciences, 372.  https://doi.org/10.1098/rstb.2016.0347.
  47. Tibbetts, E. A., Injaian, A., Sheehan, M. J., Wong, E. Intraspecific variation in learning: worker wasps are less able to learn and remember individual conspecific faces than queen wasps. American Naturalist.Google Scholar
  48. Tsao, D. Y., & Livingstone, M. S. (2008). Mechanisms of face perception. Annual Review of Neuroscience, 31, 411–437.  https://doi.org/10.1146/annurev.neuro.30.051606.094238.Mechanisms.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Vetter, K., & Caldwell, L. (2015). Chapter 2: Individual recognition in Stomatopods. In L. Aquiloni & E. Tricarico (Eds.), Social recognition in invertebrates: The knowns and the unknowns (pp. 1–266). Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-17599-7.Google Scholar
  50. White, S. L., & Gowan, C. (2013). Brook trout use individual recognition and transitive inference to determine social rank. Behavioral Ecology, 24(1), 63–69.  https://doi.org/10.1093/beheco/ars136.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborUSA

Section editors and affiliations

  • Mark A. Krause
    • 1
  1. 1.Southern Oregon UniversityAshlandUSA