Skip to main content

Smartphone-Based Cell Detection

  • Living reference work entry
  • First Online:
Handbook of Cell Biosensors

Abstract

The smartphone integrated high-resolution complementary metal-oxide semiconductor (CMOS) sensors have been widely exploited to detect optical signals, relying on colorimetric, fluorescent (FL), and bio-chemiluminescent detections. In the last 5 years, there has been an exponential increase in the publications on the use of smartphones as stand-alone bioanalytical devices. Conversely, the use of smartphones to detect cells and cell biosensors has been seldomly explored. In this chapter, we will review the smartphone potential as portable detector, and we will provide an overview on the state-of-the-art of using smartphones to detect cells and cell biosensors. Major research trends, open issues, and limitations are also addressed to provide the reader a glance on this challenging research trend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References 

  • Amin R, Knowlton S, Dupont J, Bergholz JS, Joshi A, Hart A, Yenilmez B, Yu CH, Wentworth A, Zhao JJ (2017) 3D-printed smartphone-based device for labelfree cell separation. J 3D Print Med 1(3):155–164

    Article  CAS  Google Scholar 

  • Aronoff-Spencer E, Venkatesh AG, Sun A, Brickner H, Looney D, Hall DA (2016) Detection of Hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. Biosens Bioelectron 86:690–696

    Article  CAS  Google Scholar 

  • Cevenini L, Calabretta MM, Lopreside A, Tarantino G, Tassoni A, Ferri M, Roda A, Michelini E (2016a) Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity. Anal Bioanal Chem 408:8859–8868

    Article  CAS  Google Scholar 

  • Cevenini L, Calabretta MM, Tarantino G, Michelini E, Roda A (2016b) Smartphone-interfaced 3D printed toxicity biosensor integrating bioluminescent “sentinel cells”. Sensors Actuators B Chem 225:249–257

    Article  CAS  Google Scholar 

  • Cevenini L, Lopreside A. Calabretta MM D’Elia M, Simoni P, Michelini E, Roda A (2018) A novel bioluminescent NanoLuc yeast-estrogen screen biosensor (nanoYES) with a compact wireless camera for effect-based detection of endocrine-disrupting chemicals; Anal Bioanal Chem 410:1237–1246

    Article  CAS  Google Scholar 

  • Christensen DA, Herron JN (2009) Optical system design for biosensors based on CCD detection. In: Rasooly A, Herold KE (eds) Biosensors and biodetection. Methods in molecular biology, vol 503. Humana Press, Totowa

    Google Scholar 

  • Class B, Thorne N, Aguisanda F, Southall N, McKew JC, Zheng W (2015) High-throughput viability assay using an autonomously bioluminescent cell line with a bacterial Lux reporter. J Lab Autom 20:164–174

    Article  CAS  Google Scholar 

  • Cui X, Ren L, Shan Y, Wang X, Yang Z, Li C, Xua J, Bo M (2018) Smartphone-based rapid quantification of viable bacteria by single-cell microdroplet turbidity imaging. Analyst 143:330

    Google Scholar 

  • Eltzov E, Guttel S, Yuen Kei Adarina L, Dewi Sinawang P, Ionescu RE, Marks RS (2015) Lateral flow immunoassaysefrom paper strip to smartphone technology. Electroanalysis 27:2116–2130

    Article  CAS  Google Scholar 

  • England CG, Ehlerding EB, Cai W (2016) NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconjug Chem 27(5):1175–1187

    Article  CAS  Google Scholar 

  • Ferris CJ, Gilmore KG, Wallace GG, Panhuis M (2013) Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol 97:4243–4258

    Article  CAS  Google Scholar 

  • Fronczek CF, Park TS, Harshman DK, Nicolini AM, Yoon JY (2014) Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv 4:11103–11110

    Article  CAS  Google Scholar 

  • Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Electrochemical biosensors sensor principles and architectures. Sensors 8:1400–1458

    Article  CAS  Google Scholar 

  • Hutchison JR, Erikson RL, Sheen AM, Ozanich RM, Kelly RT (2015) Reagent-free and portable detection of Bacillus anthracis spores using a microfluidic incubator and smartphone microscope. Analyst 140(18):6269–6276

    Article  CAS  Google Scholar 

  • Im H, Castro CM, Shao H, Liong M, Song J, Pathania D, Fexon L, Min C, AvilaWallace M, Zurkiya O (2015) Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone. Proc Natl Acad Sci U S A 112(18):5613–5618

    Article  CAS  Google Scholar 

  • Jiang J, Wang X, Chao R, Ren Y, Hu C, Xu Z, Liu GL (2014) Smartphone based portable bacteria pre-concentrating microfluidic sensor and impedance sensing system. Sensors Actuators B 193:653–659

    Article  CAS  Google Scholar 

  • Kim H, Awofeso O, Choi S, Jung Y, Bae E (2017a) Colorimetric analysis of salivaealcohol test strips by smartphone-based instruments using machine-learning algorithms. Appl Opt 56:8492

    Article  Google Scholar 

  • Kim H, Jung Y, Doh IJ, Lozano-Mahecha RA, Applegate B, Bae E (2017b) Smartphone-based low light detection for bioluminescence application. Sci Rep 9(7):40203

    Article  Google Scholar 

  • Lee SA, Yang C (2014) A smartphone-based chip-scale microscope using ambient illumination. Lab Chip 14(16):3056–3063

    Article  CAS  Google Scholar 

  • Liu X, Lin TY, Lillehoj PB (2014) Smartphones for cell and biomolecular detection. Ann Biomed Eng 42(11):2205–2217

    Article  Google Scholar 

  • Meng X, Huang H, Yan K, Tian X, Yu W, Cui H, Kong Y, Xue L, Liu C, Wang S (2016) Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method. Lab Chip 17(1):104–109

    Article  Google Scholar 

  • Michelini E, Cevenini L, Mezzanotte L, Ablamsky D, Southworth T, Branchini BR, Roda A (2008) Combining intracellular and secreted bioluminescent reporter proteins for multicolor cell-based assays. Photochem Photobiol Sci 7(2):212

    Article  CAS  Google Scholar 

  • Michelini E, Cevenini L, Calabretta MM, Calabria D, Roda A (2014) Exploiting in vitro and in vivo bioluminescence for the implementation of the three Rs principle (replacement, reduction, and refinement in drug discovery). Anal Bioanal Chem 406:5531–5539

    Article  CAS  Google Scholar 

  • Michelini E, Calabretta MM, Cevenini L, Lopreside A, Southworth T, Fontaine DM, Simoni P, Branchini BR, Roda A (2019) Smartphone-based multicolor bioluminescent 3D spheroid biosensors for T monitoring inflammatory activity. Biosens Bioelectron 123:269–277

    Article  CAS  Google Scholar 

  • Mora CA, Herzog AF, Raso RA, Stark WJ (2015) Programmable living material containing reporter micro-organisms permits quantitative detection of oligosaccharides. Biomaterials 61:1–9

    Article  CAS  Google Scholar 

  • Navruz I, Coskun AF, Wong J, Mohammad S, Tseng D, Nagi R, Phillips S, Ozcan A (2013) Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab Chip 13(20):4015–4023

    Article  CAS  Google Scholar 

  • Olivo J, Foglia L, Casulli MA, Boero C, Carrara S, De Micheli G (2014) Glucose and lactate monitoring in cell cultures with a wireless android interface. In: Biomedical circuits and systems conference (BioCAS). IEEE, Piscataway, pp 400–403

    Google Scholar 

  • Rajendran VK, Bakthavathsalam P, Ali PMJ (2014) Smartphone based bacterial detection using biofunctionalized fluorescent nanoparticles. Microchim Acta 181:1815–1821

    Article  CAS  Google Scholar 

  • Raut N, O’Connor G, Pasini P, Daunert S (2012) Engineered cells as biosensing systems in biomedical analysis. Anal Bioanal Chem 402:3147–3159

    Article  CAS  Google Scholar 

  • Roda A, Cevenini L, Michelini E, Branchini BR (2011) A portable bioluminescence engineered cell-based biosensor for on-site applications. Biosens Bioelectron 26(8):3647–3653

    Article  CAS  Google Scholar 

  • Roda A, Cevenini L, Borg S, Michelini E, Calabretta MM, Schüler D (2013) Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors. Lab Chip 13(24):4881–4889

    Article  CAS  Google Scholar 

  • Roda A, Guardigli M, Calabria D, Calabretta MM, Cevenini L, Michelini E (2014a) A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat. Analyst 139(24):6494–6501

    Article  CAS  Google Scholar 

  • Roda A, Michelini E, Cevenini L, Calabria D, Calabretta MM, Simoni P (2014b) Integrating biochemiluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis. Anal Chem 86:7299–7304

    Article  CAS  Google Scholar 

  • Shen L, Hagen JA, Papautsky I (2012) Point-of-care colorimetric detection with a smartphone. Lab Chip 12:4240–4243

    Article  CAS  Google Scholar 

  • Shrivastava S, Lee WI, Lee NE (2018) Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone. Biosens Bioelectron 109:90–97

    Article  CAS  Google Scholar 

  • Skandarajah A, Reber CD, Switz NA, Fletcher DA (2014) Quantitative imaging with a mobile phone microscope. PLoS One 9(5):96906

    Article  Google Scholar 

  • Su L, Jia W, Houb C, Lei YU (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799

    Article  CAS  Google Scholar 

  • Su K, Pan Y, Wan Z, Zhong L, Fang J, Zou Q, Li H, Wang P (2017) Smartphone-based portable biosensing system using cell viability biosensor for okadaic acid detection. Sensors Actuators B Chem 251:134–143

    Article  CAS  Google Scholar 

  • Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, Ozcan A (2010) Lensfree microscopy on a cellphone. Lab Chip 10(14):1787–1792

    Article  CAS  Google Scholar 

  • Zhang H, Li X, Fengchun H, Siyuan W, Lei W, Ning L, Jianhan LB (2019) A capillary biosensor for rapid detection of Salmonella using Fe-nanocluster amplification and smart phone imaging. Biosens Bioelectron 127:142–149

    Article  CAS  Google Scholar 

  • Zhu HY, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A (2011) Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem 83(17):6641–6647

    Article  CAS  Google Scholar 

  • Zhu HY, Sikora U, Ozcan A (2012) Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst 137:2541–2544

    Article  CAS  Google Scholar 

  • Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K, Ozcan A (2013) Cost-effective and rapid blood analysis on a cell-phone. Lab Chip 13(7):1282–1288

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Michelini .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Calabretta, M.M., Montali, L., Lopreside, A., Roda, A., Michelini, E. (2019). Smartphone-Based Cell Detection. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_98-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_98-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics