Skip to main content

Acoustic Biosensors for Cell Research

  • Living reference work entry
  • First Online:
Handbook of Cell Biosensors

Abstract

Drawing inspiration from nature and applying natural principles can support the continuous improvement of sensing technologies in various fields, such as medicine, pharmacy, and environmental applications. It is difficult to directly connect a sensing system to a complex biological system. Thus, finding a suitable technique that simplifies and interprets complicated biological information to generate readable signals is in high demand. Acoustic technology appears to be a promising sensing model. The monitoring of the biochemical processes or the quantification of a captured analyte can be performed utilizing acoustic wave devices that rely on gravimetric sensing of materials adsorbed onto the sensor surface. Considering nature as a toolkit that provides individual puzzle pieces that can be assembled carefully into a sensory system offers a rich source to build selective and sensitive biosensors. The natural toolbox includes biological components such as DNA, RNA, sugar, amino acids, proteins, and lipids, in addition to nonbiological components such as graphene, carbon nanotubes, and metals. These molecules can be assembled together onto piezoelectric substrates to enhance the functionality of fabricated acoustic devices. This chapter has classified acoustic biosensors into four classes for various cell applications. First, lipid membrane-based biosensors are biomimetic models constructed by natural biological materials to simplify the complexity of biological cell membranes and enable investigations of membrane proteins in a native-like environment. These bioarchitectures also offer a good opportunity to investigate the interactions of lipids and proteins under controlled conditions. Second, whole cell-based biosensors are fabricated to enable investigations of cellular behaviors such as cell adhesion and cell-substrate interactions. Third, detection biosensors are also attracting attention due to their high sensitivity, ability to track cells in real time without labeling, and ability to differentiate between viable and nonviable cells. Finally, recent advancements in the fabrication of acoustic biosensors have enabled cells themselves to act as biosensors to detect analytes. All designed acoustic platforms are aimed at studying the cell, the basic unit of life, from different perspectives. The facts discussed in this chapter are based on phenomena that cannot be visualized by the eye, such as cellular interactions, or factors present in such small quantities, but they can be heard by tracking their acoustic sounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ágnes Á, Miklós K, György K, Éva K (2017) Amphiphilic polymer layer – model cell membrane interaction studied by QCM and AFM. Eur Polym J 93:212–221

    Article  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Alix-Panabieres C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14:623–631

    Article  CAS  PubMed  Google Scholar 

  • Andrä J, Böhling A, Gronewold TMA et al (2008) Surface acoustic wave biosensor as a tool to study the interactions of antimicrobial peptides with phospholipid and lipopolysaccharide model membranes. Langmuir 24:9148–9153

    Article  PubMed  CAS  Google Scholar 

  • Atay S, Piskin K, Ylmaz F et al (2016) Quartz crystal microbalance based biosensors for detecting highly metastatic breast cancer cells via their transferrin receptors. Anal Methods 8:153–161

    Article  CAS  Google Scholar 

  • Avsar SY, Jackman JA, Kim MC et al (2017) Immobilization strategies for functional complement convertase assembly at lipid membrane interfaces. Langmuir 33(29):7332–7342

    Article  CAS  Google Scholar 

  • Bell A (2006) Sensors, motors, and tuning in the cochlea: interacting cells could form a surface acoustic wave resonator. J Bioinspiration Biomimetics 1:96–101

    Article  Google Scholar 

  • Bendas G, Borsig L (2012) Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol 2012:676731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhalla N, Jolly P, Formisano N, Estrela P (2016) Introduction to biosensors. Essays Biochem 60(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Bisoffi M, Hjelle B, Brown DC et al (2008) Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. Biosens Bioelectron 23:1397–1403

    Article  CAS  PubMed  Google Scholar 

  • Braunhut SJ, McIntosh D, Vorotnikova E et al (2005) Detection of apoptosis and drug resistance of human breast cancer cells to taxane treatments using quartz crystal microbalance biosensor technology. Assay Drug Dev Technol 3(1):77–88

    Article  CAS  PubMed  Google Scholar 

  • Bröker P, Lücke K, Perpeet M, Gronewold T (2012) A nanostructured SAW chip-based biosensor detecting cancer cells. Sens Actuat B Chem 165(1):1–6

    Article  CAS  Google Scholar 

  • Castellana E, Cremer P (2006) Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep 61(10):429–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JY, Penn LS, Xi J (2018) Quartz crystal microbalance: sensing cell-substrate adhesion and beyond. Biosens Bioelectron 99:593–602

    Article  CAS  PubMed  Google Scholar 

  • Cho NJ, Frank CW, Kasemo B, Hook F (2010) Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat Protoc 5:1096–1106

    Article  CAS  PubMed  Google Scholar 

  • Chronaki D, Stratiotis DI, Tsortos A et al (2016) Screening between normal and cancer human thyroid cells through comparative adhesion studies using the quartz crystal microbalance. Sens Biosens Res 11(Part 2):99–106

    Google Scholar 

  • Cremer PS, Boxer SG (1999) Formation and spreading of lipid bilayers on planar glass supports. J Phys Chem B 103:2554–2559

    Article  CAS  Google Scholar 

  • Czanderna AW, Lu C (1984) In: Lu C, Czanderna AW (eds) Applications of piezoelectric quartz crystal microbalances, vol 7. Elsevier, Amsterdam

    Chapter  Google Scholar 

  • Damiati S (2018) Can we rebuild the cell membrane? In: Artmann G, Artmann A, Zhubanova A, Digel I (eds) Biological, physical and technical basics of cell engineering. Springer, Singapore

    Google Scholar 

  • Damiati S (2019) New opportunities for creating man-made bioarchitectures utilizing microfluidics. Biomed Microdevices 21:62

    Article  PubMed  Google Scholar 

  • Damiati S, Zayni S, Schrems A et al (2015a) Inspired and stabilized by nature: ribosomal synthesis of the human voltage gated ion channel (VDAC) into 2D-protein-tethered lipid interfaces. Biomater Sci 3:1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Damiati S, Schrems A, Sinner EK et al (2015b) Probing peptide and protein insertion in a biomimetic S-layer supported lipid membranes platform. Int J Mol Sci 16:2824–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damiati S, Küpcü S, Peacock M et al (2017) Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2). Biosens Bioelectron 94:500–506

    Article  CAS  PubMed  Google Scholar 

  • Damiati S, Peacock M, Leonhardt S et al (2018a) Embedded disposable functionalized electrochemical biosensor with a 3D-printed flow-cell for detection of hepatic oval cells. Genes 9(2):89

    Article  PubMed Central  CAS  Google Scholar 

  • Damiati S, Mhanna R, Kodzius R, Ehmoser EK (2018b) Cell-free approaches in synthetic biology utilizing microfluidics. Genes 9(3):144

    Article  PubMed Central  CAS  Google Scholar 

  • Damiati S, Peacock M, Mhanna R et al (2018c) Bioinspired detection sensor based on functional nanostructures of S-proteins to target the folate receptors in breast cancer cells. Sens Actuat B Chem 267:224–230

    Article  CAS  Google Scholar 

  • Damiati S, Hersman C, Søpstad S et al (2019) Sensitivity comparison of macro- and micro-electrochemical biosensors for human chorionic gonadotropin (hCG) biomarker detection. IEEE Access 7:94048–94058

    Article  Google Scholar 

  • Da-Silva AC, Rodrigues R, Rosa L et al (2012) Acoustic detection of cell adhesion on a quartz crystal microbalance. Biotechnol Appl Biochem 59(6):411–419

    Article  CAS  PubMed  Google Scholar 

  • Dey N, Ashour AS, Mohamed WS, Nguyen NG (2018) Acoustic wave technology. In: Acoustic sensors for biomedical applications. Springer, Cham

    Google Scholar 

  • Ding X, Li P, Lin SC et al (2013) Surface acoustic wave microfluidics. Lab Chip 13(18):3626–3649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobbins P (2007) Dolphin sonar-modelling a new receiver concept. J Bioinspiration Biomimetics 2:19–29

    Article  CAS  Google Scholar 

  • Dopico AM, Tigyi GJ (2007) A glance at the structural and functional diversity of membrane lipids. Methods Mol Biol 400:1–13

    Article  CAS  PubMed  Google Scholar 

  • Drafts B (2001) Acoustic wave technology sensors. IEEE Trans Microw Theory Tech 49(4):795–802

    Article  CAS  Google Scholar 

  • Durmus N, Lin R, Kozberg M et al (2008) Acoustics based biosensors. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, Boston

    Google Scholar 

  • Eeman M, Deleu M (2010) From biological membranes to biomimetic model membranes. Biotechnol Agron Soc Environ 14(4):719–736

    Google Scholar 

  • Endo Y, Sawasaki T (2006) Cell-free expression systems for eukaryotic protein production. Curr Opin Biotechnol 17:373–380

    Article  CAS  PubMed  Google Scholar 

  • Ferrari V, Lucklum R (2004) Overview of Acoustic-Wave Microsensors. In: Arnau Vives A (eds) Piezoelectric Transducers and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77508-9_2

  • Fogel R, Limson J, Seshia AA (2016) Acoustic biosensors. Essays Biochem 60:101–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Fohlerová Z, Skládal P, Turánek J (2007) Adhesion of eukaryotic cell lines on the gold surface modified with extracellular matrix proteins monitored by the piezoelectric sensor. Biosens Bioelectron 22(9–10):1896–1901

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Luo Q, Nguyen JK et al (2017) Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog Mater Sci 89:31–91

    Article  CAS  Google Scholar 

  • Galkina E, Ley K (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 27(11):2292–2301

    Article  CAS  PubMed  Google Scholar 

  • Glasmastar K, Larsson C, Hook F, Kasemo B (2002) Protein adsorption on supported phospholipid bilayers. J Colloid Interface Sci 246:40–47

    Article  PubMed  CAS  Google Scholar 

  • Grainger DW, Castner DG (2011) 3.1 Surface analysis and biointerfaces: Vacuum and ambient in situ techniques. In: Ducheyne P (eds) Comprehensive Biomaterials II. vol 3, 1–22, Elsevier

    Google Scholar 

  • Grate JW, Frye GC (1996) Acoustic wave sensors. In: Göpel W, Hesse J (eds) Sensors update. Wiley-VCH, Weinheim

    Google Scholar 

  • Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8:1400–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gui Q, Lawson T, Shan S et al (2017) The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 17:1623

    Article  CAS  PubMed Central  Google Scholar 

  • Guidelli R, Becucci L (2012) 4 Electrochemistry of Biomimetic Membranes. In: Eliaz N. (eds) Applications of Electrochemistry and Nanotechnology in Biology and Medicine II. Modern Aspects of Electrochemistry, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2137-5_4

    Google Scholar 

  • Gutiérrez JC, Amaro F, Martín-González A (2015) Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Front Microbiol 6:48

    PubMed  PubMed Central  Google Scholar 

  • Hardy GJ, Nayak R, Alam SM et al (2012) Biomimetic supported lipid bilayers with high cholesterol content formed by alpha-helical peptide-induced vesicle fusion. J Mater Chem 22:19506–19513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy GJ, Nayak R, Zauscher S (2013) Model cell membranes: techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Curr Opin Colloid Interface Sci 18(5):448–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan A, Nurunnabi M, Morshed M et al (2014) Recent advances in application of biosensors in tissue engineering. Biomed Res Int 2014:307519

    PubMed  PubMed Central  Google Scholar 

  • Haslam C, Damiati S, Whitley T et al (2018) Label-free sensors based on graphene field-effect transistors for the detection of human chorionic gonadotropin cancer risk biomarker. Diagnostics 8(1):5

    Article  PubMed Central  CAS  Google Scholar 

  • Hennig M, Neumann J, Wixforth A et al (2009) Dynamic patterns in a supported lipid bilayer driven by standing surface acoustic waves. Lab Chip 9:3050–3053

    Article  CAS  PubMed  Google Scholar 

  • Hennig M, Wolff M, Neumann J et al (2011) DNA concentration modulation on supported lipid bilayers switched by surface acoustic waves. Langmuir 27:14721–14725

    Article  CAS  PubMed  Google Scholar 

  • Hewa Peduru TM, Tannock GA, Mainwaring DE et al (2009) The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance. J Virol Methods 162(1–2): 14–21

    Article  CAS  Google Scholar 

  • Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23(9):1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Howe E, Harding GA (2000) Comparison of protocols for the optimisation of detection of bacteria using a surface acoustic wave (SAW) biosensor. Biosens Bioelectron 15:641–649

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Rajan L, Schilling WP (1994) Ca2+ signaling in Sf9 insect cells and the functional expression of a rat brain M5 muscarinic receptor. Am J Phys (Cell Physiol) 266:C1736–C1743

    Article  CAS  Google Scholar 

  • Huang X, Bai Q, Hu J, Hou D (2017) A practical model of quartz crystal microbalance in actual applications. Sensors (Basel) 17(8):1785

    Article  Google Scholar 

  • Inci F, Celik U, Turken B et al (2015) Construction of P-glycoprotein incorporated tethered lipid bilayer membranes. Biochem Biophys Rep 2:115–122

    PubMed  PubMed Central  Google Scholar 

  • Islam K, Damiati S, Sethi J, Suhail A, Pan G (2018) Development of a label-free immunosensor for clusterin detection as an Alzheimer’s biomarker. Sensors 18(1):308

    Article  CAS  PubMed Central  Google Scholar 

  • Jackson A, Boutell J, Cooley N, He M (2004) Cell-free protein synthesis for proteomics. Brief Funct Genomic Proteomic 2:308–319

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa KK, Gordon JG II (1985) The oscillation frequency of a quartz resonator in contact with liquid. Anal Chim Acta 175:99–105

    Article  CAS  Google Scholar 

  • Kaniusas E (2015) Biomedical signals and sensors II – linking acoustic and optic biosignals and biomedical sensors. Springer, Berlin

    Google Scholar 

  • Kaspar M, Stadler H, Weiss T et al (2000) Thickness shear mode resonators (“mass sensitive devices”) in bioanalysis. Fresenius J Anal Chem 366:602–610

    Article  CAS  PubMed  Google Scholar 

  • Khalili AA, Ahmad MR (2015) A review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci 16(8):18149–18184

    Article  CAS  PubMed  Google Scholar 

  • Kilic A, Kok FN (2018) Peptide-functionalized supported lipid bilayers to construct cell membrane mimicking interfaces. Colloids Surf B Biointerfaces 176:18–26

    Article  PubMed  CAS  Google Scholar 

  • King WH (1964) Piezoelectric sorption detector. Anal Chem 36:1735–1739

    Article  CAS  Google Scholar 

  • Ko Ferrigno P (2016) Non-antibody protein-based biosensors. Essays Biochem 60(1):19–25

    Article  PubMed  Google Scholar 

  • Konradi R, Textor M, Reimhult E (2012) Using complementary acoustic and optical techniques for quantitative monitoring of biomolecular adsorption at interfaces. Biosensors 2:341–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A (2000) Biosensors based on piezoelectric crystal detectors: theory and application. JOM-e, 52 (10). Available at: https://www.tms.org/pubs/journals/JOM/0010/Kumar/Kumar-0010.html. Accessed 25 June 2019

  • Lec RM, Lewin PA (1999) Acoustic wave biosensors, engineering in medicine and biology society, 1998. In: Proceedings of the 20th annual international conference of the IEEE, vol 6, pp 2779–2784

    Google Scholar 

  • Lee CF, Yan TR, Wang TH (2012) Long-term monitoring of Caco-2 cell growth process using a QCM-cell system. Sens Actuat B Chem 166:165–171

    Article  CAS  Google Scholar 

  • Li F, Wang JH, Wang QM (2007) Monitoring cell adhesion by using thickness shear mode acoustic wave sensors. Biosens Bioelectron 23(1):42–50

    Article  PubMed  CAS  Google Scholar 

  • Li P, Mao Z, Zhangli Peng Z et al (2015) Acoustic separation of circulating tumor cells. PNAS 112(6):4970–4975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Li F, Nordin AN, Voiculescu I (2013) A novel cell-based hybrid acoustic wave biosensor with impedimetric sensing capabilities. Sensors 13:3039–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord MS, Modin C, Foss M et al (2008) Extracellular matrix remodelling during cell adhesion monitored by the quartz crystal microbalance. Biomaterials 29(17):2581–2587

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Smyth MR, Okennedy R (1996) Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. Analyst 121(3):R29–R32

    Article  Google Scholar 

  • Lu Y, Huskens J, Pang W, Duan X (2019) Hypersonic poration of supported lipid bilayers. Mater Chem Front 3:782–790

    Article  CAS  Google Scholar 

  • Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129

    Article  CAS  PubMed  Google Scholar 

  • Maglio O, Costanzo S, Cercola R et al (2017) A quartz crystal microbalance immunosensor for stem cell selection and extraction. Sensors 17:2747

    Article  CAS  PubMed Central  Google Scholar 

  • Marsh D (1990) CRC handbook of lipid bilayers. CRC Press, Boca Raton

    Google Scholar 

  • Marx KA, Zhou T, Montrone A et al (2007) A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects. Anal Biochem 361(1):77–92

    Article  CAS  PubMed  Google Scholar 

  • Misawa N, Osaki T, Takeuchi S (2018) Membrane protein-based biosensors. J R Soc Interface 15:20170952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Modin C, Stranne AL, Foss M et al (2006) QCM-D studies of attachment and differential spreading of pre-osteoblastic cells on Ta and Cr surfaces. Biomaterials 27:1346–1354

    Article  CAS  PubMed  Google Scholar 

  • Morgan D (1991) Surface-wave devices for signal processing. Elsevier, Amsterdam, p 152

    Google Scholar 

  • Neumann J, Hennig M, Wixforth A et al (2010) Transport, separation, and accumulation of proteins on supported lipid bilayers. Nano Lett 10:2903–2908

    Article  CAS  PubMed  Google Scholar 

  • Perez JA, Sosa-Hernandez JE, Hussain SM et al (2019) Bioinspired biomaterials and enzyme-based biosensors for point-of-care applications with reference to cancer and bio-imaging. Biocatal Agric Biotechnol 17:168–176

    Article  Google Scholar 

  • Pomorski TG, Nylander T, Cárdenas M (2014) Model cell membranes: discerning lipid and protein contributions in shaping the cell. Adv Colloid Interf Sci 205:207–220

    Article  CAS  Google Scholar 

  • Racz Z, Cole M, Gardner JW et al (2011) Cell-based surface acoustic wave resonant microsensor for biomolecular agent detection. In: 2011 16th international solid-state sensors, actuators and microsystems conference, TRANSDUCERS’11, pp 2168–2171

    Google Scholar 

  • Reimhult E, Höök F (2015) Design of surface modifications for nanoscale sensor applications. Sensors 15:1635–1675

    Article  PubMed  PubMed Central  Google Scholar 

  • Reusch T, Schülein FJR, Nicolas JD et al (2014) Collective lipid bilayer dynamics excited by surface acoustic waves. Phys Rev Lett 113:118102

    Article  CAS  PubMed  Google Scholar 

  • Rocha-Gaso MI, March-Iborra C, Montoya-Baides A, Arnau-Vives A (2009) Surface generated acoustic wave biosensors for the detection of pathogens: a review. Sensors 9:5740–5769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodahl M, Kasemo B (1996) Frequency and dissipation-factor responses to localized liquid deposits on a 18 QCM electrode. Sens Actuators B: Chem 37:111–116

    Article  CAS  Google Scholar 

  • Rodahl M, Höök F, Krozer A et al (1995) Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum 66:3924–3930

    Article  CAS  Google Scholar 

  • Saad N A, Zaaba S K, Zakaria A, et al (2014) Quartz Crystal Microbalance for Bacteria Application Review. 2nd International Conference on Electronic Design (ICED), Penang, 2014, pp. 455–460. https://doi.org/10.1109/ICED.2014.7015849

  • Saitakis M, Tsortos A, Gizeli E (2010) Probing the interaction of a membrane receptor with a surface-attached ligand using whole cells on acoustic biosensors. Biosens Bioelectron 25(7):1688–1693

    Article  CAS  PubMed  Google Scholar 

  • Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wa¨ gung du¨ nner Schichten und zur Mikrowa¨ gung. Z Physik 155:206–222

    Article  CAS  Google Scholar 

  • Schrems A, Larisch V, Dutter K, Stanetty C, Damiati S, Sleytr UB, Schuster B (2011) Triggered liposome fusion on proteinaceous S-layer lattices via europium-complex formation. Soft Matter 7(12):5514–5518

    Article  CAS  Google Scholar 

  • Schuster B (2018) S-layer protein-based biosensors. Biosensors 8:40

    Article  PubMed Central  CAS  Google Scholar 

  • Şeker Ş, Murat Elçin Y (2017) Quartz crystal microbalance–based biosensors. In: Biological and medical sensor technologies. CRC Press, Boca Raton

    Google Scholar 

  • Spector AA, Brownell WE, Popel AS (2003) Effect of outer hair cell piezoelectricity on high-frequency receptor potentials. J Acoust Soc Am 113:453–461

    Article  PubMed  Google Scholar 

  • Stroble JK, Stone RB, Watkins SE (2009) An overview of biomimetic sensor technology. Sens Rev 29(2):112–119

    Article  Google Scholar 

  • Tagaya M (2015) In situ QCM-D study of nano-bio interfaces with enhanced biocompatibility. Polym J 47:599–608

    Article  CAS  Google Scholar 

  • Tanaka M (2006) Polymer-supported membranes: physical models of cell surfaces. MRS Bull 31:513–520

    Article  CAS  Google Scholar 

  • Tigli O, Bivona L, Berg P, Zaghloul ME (2010) Fabrication and characterization of a surface-acoustic-wave biosensor in CMOS technology for cancer biomarker detection. IEEE Trans Biomed Circuits Syst 4(1):62–73

    Article  CAS  PubMed  Google Scholar 

  • Tombelli S, Minunni A, Mascini A (2005) Analytical applications of aptamers. Biosens Bioelectron 20(12):2424–2434

    Article  CAS  PubMed  Google Scholar 

  • Visvanathan K, Li T, Gianchandani YB (2012) A biopsy tool with integrated piezoceramic elements for needle tract cauterization and cauterization monitoring. Biomed Microdevices 14:55–65

    Article  PubMed  Google Scholar 

  • Walters RH, Jacobson KH, Pedersen JA, Murphy RM (2012) Elongation kinetics of polyglutamine peptide fibrils: a quartz crystal microbalance with dissipation study. J Mol Biol 421(2–3): 329–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Li Y (2013) Hydrogel based QCM aptasensor for detection of avian influenza virus. Biosens Bioelectron 42(1):148–155

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Zhe J (2011) Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip 11:1280–1285

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Dewilde AH, Zhang J et al (2011) A living cell quartz crystal microbalance biosensor for continuous monitoring of cytotoxic responses of macrophages to single-walled carbon nanotubes. Part Fibre Toxicol 8:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Wang L, Hu Q et al (2018) Rapid and sensitive detection of campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation. J Food Protect 81(8):1321–1330

    Article  Google Scholar 

  • Westas E, Svanborg LM, Wallin P et al (2015) Using QCM-D to study the adhesion of human gingival fibroblasts on implant surfaces. J Biomed Mater Res A 103:3139–3147

    Article  CAS  PubMed  Google Scholar 

  • Wink T, van Zuilen S, Bult A et al (1997) Self-assembled monolayers for biosensors. Analyst 122:43R

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Huang PH, Zhang R et al (2018) Circulating tumor cell phenotyping via high-throughput acoustic separation. Small 14(32):e1801131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu H, Zu H, Wang JHC, Wang QM (2019) A study of love wave acoustic biosensors monitoring the adhesion process of tendon stem cells (TSCs). Eur Biophys J 48:249–260

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz E, Majidi D, Ozgur E, Denizli A (2015) Whole cell imprinting based Escherichia coli sensors: a study for SPR and QCM. Sens Actuat B Chem 209:714–721

    Article  CAS  Google Scholar 

  • Zhang S, Bai H, Luo J (2014) A recyclable chitosan-based QCM biosensor for sensitive and selective detection of breast cancer cells in real time. Analyst 139:6259

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Wang Z, Zhao A, Huang N et al (2014) Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation. Colloids Surf B Biointerfaces 116:459–464

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samar Damiati .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Damiati, S. (2020). Acoustic Biosensors for Cell Research. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_150-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_150-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics