Skip to main content

Cell-Free Biosensors: Synthetic Biology Without Borders

  • Living reference work entry
  • First Online:
Handbook of Cell Biosensors

Abstract

Cell-free biosensors can take many forms and can range in complexity from single enzymes to engineered systems of biological components that support synthetic biology applications. This chapter will review the many recent innovations from this latter category and will explore how these more complex systems create synthetic networks to provide biosensors with signal amplification, programmability, high sensitivity, and even tolerance for analyte variation. In particular, cell-free biosensors that operate using isothermal amplification, coupled transcription and translation systems, and CRISPR-related mechanisms will be highlighted. Such DNA-/RNA-based technologies are an especially exciting category for cell-free biosensing, and here this rapidly evolving class of sensors, including toehold switch- and CRISPR-based systems, will be reviewed. Cell-free biosensors are also increasingly designed with companion hardware, and, in doing so, researchers are embedding the capacity for these otherwise laboratory-based reactions to be deployed in real-world applications. Among many innovations, this chapter will highlight how freeze-dried and paper-based systems, low-cost optical readers, and lateral flow devices are helping extend the reach of cell-free biosensors into new environments and applications. Taken together, the use of cell-free synthetic biology and engineered biochemical systems is an exciting category of biosensing and is on track to make significant contributions toward decentralizing the capacity for sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akter F, Yokobayashi Y (2015) RNA signal amplifier circuit with integrated fluorescence output. ACS Synth Biol 4:655–658

    Article  CAS  PubMed  Google Scholar 

  • Alam KK, Tawiah KD, Lichte MF, Porciani D, Burke DHA (2017) Fluorescent split aptamer for visualizing RNA-RNA assembly in vivo. ACS Synth Biol 6:1710–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alladin-Mustan BS, Mitran CJ, Gibbs-Davis JM (2015) Achieving room temperature DNA amplification by dialling in destabilization. Chem Commun 51:9101–9104

    Article  CAS  Google Scholar 

  • Allen EH, Schwemt RS (1962) Synthesis of hemoglobin in a cell-free system. J Biol Chem 237:760–767

    CAS  PubMed  Google Scholar 

  • Allen PB, Arshad SA, Li B, Chen X, Ellington AD (2012) DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform. Lab Chip 12:2951–2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando H, Sinha S, Storni R, Aihara K (2011) Synthetic gene networks as potential flexible parallel logic gates. EPL (Europhys Lett) 93:50001

    Article  CAS  Google Scholar 

  • Aw SS, Tang MX, Teo YN, Cohen SM (2016) A conformation-induced fluorescence method for microRNA detection. Nucleic Acids Res 44:e92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker BR et al (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128:3138–3139

    Article  CAS  PubMed  Google Scholar 

  • Banica F-G (2012) Chemical sensors and biosensors: fundamentals and applications. Wiley, Chichester

    Book  Google Scholar 

  • Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol 23:337–343

    Article  CAS  PubMed  Google Scholar 

  • Bhadra S, Ellington AD (2014) A spinach molecular beacon triggered by strand displacement. RNA 20:1183–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brödel AK, Sonnabend A, Kubick S (2014) Cell-free protein expression based on extracts from CHO cells. Biotechnol Bioeng 111:25–36

    Article  PubMed  CAS  Google Scholar 

  • Buntru M, Vogel S, Spiegel H, Schillberg S (2014) Tobacco BY-2 cell-free lysate: an alternative and highly-productive plant-based in vitro translation system. BMC Biotechnol 14:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buntru M, Vogel S, Stoff K, Spiegel H, Schillberg S (2015) A versatile coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates. Biotechnol Bioeng 112:867–878

    Article  CAS  PubMed  Google Scholar 

  • Burchill SA, Perebolte L, Johnston C, Top B, Selby P (2002) Comparison of the RNA-amplification based methods RT-PCR and NASBA for the detection of circulating tumour cells. Br J Cancer 86:102–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgenson D et al (2018) Rapid recombinant protein expression in cell-free extracts from human blood. Sci Rep 8:9569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burlage RS, Sayler GS, Larimer F (1990) Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions. J Bacteriol 172:4749–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12:381–390

    Article  CAS  PubMed  Google Scholar 

  • Cao Y et al (2017) Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Ustilago maydis. Sci Rep 7:13394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caschera F, Noireaux V (2014) Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription–translation system. Biochimie 99:162–168

    Article  CAS  PubMed  Google Scholar 

  • Catherine C, Lee K-H, Oh S-J, Kim D-M (2013) Cell-free platforms for flexible expression and screening of enzymes. Biotechnol Adv 31:797–803

    Article  CAS  PubMed  Google Scholar 

  • Chandler M, Hayenga K, Heinsohn H (2015) Formulations for drying bacterial extracts

    Google Scholar 

  • Chappell J, Westbrook A, Verosloff M, Lucks JB (2017) Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nat Commun 8:1–11

    Article  CAS  Google Scholar 

  • Chen H-W, Ching W-M (2017) Evaluation of the stability of lyophilized loop-mediated isothermal amplification reagents for the detection of Coxiella burnetii. Heliyon 3:e00415

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen HZ, Zubay G (1983) Prokaryotic coupled transcription-translation. Methods Enzymol 101:674–690

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Briggs N, McLain JR, Ellington AD (2013a) Stacking nonenzymatic circuits for high signal gain. Proc Natl Acad Sci 110:5386–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SX, Zhang DY, Seelig G (2013b) Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA. Nat Chem 5. https://doi.org/10.1038/nchem.1713

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM et al (2018;eaar6245) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 6245:1–8

    Google Scholar 

  • Choudhury A, Hodgman CE, Anderson MJ, Jewett MC (2014) Evaluating fermentation effects on cell growth and crude extract metabolic activity for improved yeast cell-free protein synthesis. Biochem Eng J 91:140–148

    Article  CAS  Google Scholar 

  • Clark LC, Lyons C (2006) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  Google Scholar 

  • Cordray MS, Richards-Kortum RR (2012) Emerging nucleic acid-based tests for point-of-care detection of malaria. Am J Trop Med Hyg 87:223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crannell ZA, Rohrman B, Richards-Kortum R (2014) Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One 9:e112146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cunningham JC, DeGregory PR, Crooks RM (2016) New functionalities for paper-based sensors lead to simplified user operation, lower limits of detection, and new applications. Annu Rev Anal Chem 9:183–202

    Article  Google Scholar 

  • Curtis KA et al (2012) Isothermal amplification using a chemical heating device for point-of-care detection of HIV-1. PLoS One 7:e31432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVries JK, Zubay G (1967) DNA-directed peptide synthesis. II. The synthesis of the alpha-fragment of the enzyme beta-galactosidase. Proc Natl Acad Sci U S A 57:1010–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Didovyk A, Tonooka T, Tsimring L, Hasty J (2017) Rapid and scalable preparation of bacterial lysates for cell-free gene expression. ACS Synth Biol 6:2198–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101:15275–15278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty EA, Doudna JA (2000) Ribozyme structures and mechanisms. Annu Rev Biochem 69:597–615

    Article  CAS  PubMed  Google Scholar 

  • Dolgosheina EV et al (2014) RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem Biol 9:2412–2420

    Article  CAS  PubMed  Google Scholar 

  • Duyen TTM et al (2016) Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis. J Biosci Bioeng 123:96–100

    Article  PubMed  CAS  Google Scholar 

  • Elbaz J et al (2010) DNA computing circuits using libraries of DNAzyme subunits. Nat Nanotechnol 5:417

    Article  CAS  PubMed  Google Scholar 

  • Engelen W, Meijer LHH, Somers B, de Greef TFA, Merkx M (2017) Antibody-controlled actuation of DNA-based molecular circuits. Nat Commun 8:14473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezure T et al (2006) Cell-free protein synthesis system prepared from insect cells by freeze-thawing. Biotechnol Prog 22:1570–1577

    Article  CAS  PubMed  Google Scholar 

  • Failmezger J, Scholz S, Blombach B, Siemann-Herzberg M (2018) Cell-free protein synthesis from fast-growing vibrio natriegens. Front Microbiol 9:1146

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan C, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci 100:9134–9137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenz SF, Sachse R, Schmidt T, Kubick S (2014) Cell-free synthesis of membrane proteins: tailored cell models out of microsomes. Biochim Biophys Acta Biomembr 1838:1382–1388

    Article  CAS  Google Scholar 

  • Fernandez-Rodriguez J, Moser F, Song M, Voigt CA (2017) Engineering RGB color vision into Escherichia coli. Nat Chem Biol 13:706+

    Article  CAS  PubMed  Google Scholar 

  • Ferrari M (2006) Biomolecular sensing, processing and analysis. BioMEMS Biomed. Nanotechnol. IV

    Google Scholar 

  • Fossati E et al (2014) Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nat Commun 5:3283

    Article  PubMed  CAS  Google Scholar 

  • Gale EF, Folkes JP (1954) Effect of nucleic acids on protein synthesis and amino-acid incorporation in disrupted staphylococcal cells. Nature 173:1223–1227

    Article  CAS  PubMed  Google Scholar 

  • Garamella J, Marshall R, Rustad M, Noireaux V (2016) The all E. coli TX-TL toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth Biol 5:344–355

    Article  CAS  PubMed  Google Scholar 

  • Gootenberg JS et al (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gootenberg JS et al (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360:439–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto M, Honda E, Ogura A, Nomoto A, Hanaki K-I (2009) Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques 46:167–172

    Article  CAS  PubMed  Google Scholar 

  • Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell 159:925–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green AA et al (2017) Complex cellular logic computation using ribocomputing devices. Nature 548:117–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guatelli JC et al (1990) Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci U S A 87:1874–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamaguchi N, Ellington A, Stanton M (2001) Aptamer beacons for the direct detection of proteins. Anal Biochem 294:126–131

    Article  CAS  PubMed  Google Scholar 

  • Harbers M (2014) Wheat germ systems for cell-free protein expression. FEBS Lett 588:2762–2773

    Article  CAS  PubMed  Google Scholar 

  • Heyduk E, Dummit B, Chang Y-H, Heyduk T (2008) Molecular pincers: antibody-based homogeneous protein sensors. Anal Chem 80:5152–5159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenstein M, Hipolito C, Lam C, Dietrich D, Perrin DM (2008) A highly selective DNAzyme sensor for mercuric ions. Angew Chem Int Ed 47:4346–4350

    Article  CAS  Google Scholar 

  • Hongwarittorrn I, Chaichanawongsaroj N, Laiwattanapaisal W (2017) Semi-quantitative visual detection of loop mediated isothermal amplification (LAMP)-generated DNA by distance-based measurement on a paper device. Talanta 175:135–142

    Article  CAS  PubMed  Google Scholar 

  • Hu J et al (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597

    Article  CAS  PubMed  Google Scholar 

  • Huang H et al (2014) A G-quadruplex–containing RNA activates fluorescence in a GFP-like fluorophore. Nat Chem Biol 10:686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K et al (2017) FASTmiR: an RNA-based sensor for in vitro quantification and live-cell localization of small RNAs. Nucleic Acids Res 45:e130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacs FJ et al (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22:841–847

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa K, Sato K, Shima Y, Urabe I, Yomo T (2004) Expression of a cascading genetic network within liposomes. FEBS Lett 576:387–390

    Article  CAS  PubMed  Google Scholar 

  • Jackson RJ, Hunt T (1983) Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol 96:50–74

    Article  CAS  PubMed  Google Scholar 

  • Janssen BMG et al (2013) Reversible blocking of antibodies using bivalent peptide-DNA conjugates allows protease-activatable targeting. Chem Sci 4:1442–1450

    Article  CAS  Google Scholar 

  • Janssen BMG, van Rosmalen M, van Beek L, Merkx M (2015) Antibody activation using DNA-based logic gates. Angew Chem Int Ed 54:2530–2533

    Article  CAS  Google Scholar 

  • Jayaraman P et al (2018) Cell-free optogenetic gene expression system. ACS Synth Biol 7:986–994

    Article  CAS  PubMed  Google Scholar 

  • Jewett MC, Swartz JR (2004) Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol Bioeng 86:19–26

    Article  CAS  PubMed  Google Scholar 

  • Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol 4:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamiya Y et al (2015) Synthetic gene involving Azobenzene-Tethered T7 promoter for the photocontrol of gene expression by visible light. ACS Synth Biol 4:365–370

    Article  CAS  PubMed  Google Scholar 

  • Karig DK (2017) Cell-free synthetic biology for environmental sensing and remediation. Curr Opin Biotechnol 45:69–75

    Article  CAS  PubMed  Google Scholar 

  • Karig DK, Bessling S, Thielen P, Zhang S, Wolfe J (2017) Preservation of protein expression systems at elevated temperatures for portable therapeutic production. J R Soc Interface. pii: 20161039. https://doi.org/10.1098/rsif.2016.1039. PMID: 28446704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kelwick R, Webb AJ, MacDonald JT, Freemont PS (2016) Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements. Metab Eng 38:370–381

    Article  CAS  PubMed  Google Scholar 

  • Kigawa T et al (2004) Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J Struct Funct Genom 5:63–68

    Article  CAS  Google Scholar 

  • Kikuchi N, Kolpashchikov DM (2016) Split spinach aptamer for highly selective recognition of DNA and RNA at ambient temperatures. Chembiochem 17:1589–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-W et al (2006) Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J Biotechnol 126:554–561

    Article  CAS  PubMed  Google Scholar 

  • Kjelstrup MV, Nielsen LDF, Hansen-Bruhn M, Gothelf KV (2018) A DNA-based assay for digoxin detection. Biosens Bioelectron 8:19–30

    Article  CAS  Google Scholar 

  • Kobayashi H et al (2004) Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci U S A 101:8414–8419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolpashchikov DM (2005) Binary malachite green aptamer for fluorescent detection of nucleic acids. J Am Chem Soc 127:12442–12443

    Article  CAS  PubMed  Google Scholar 

  • Kotula JW et al (2014) Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc Natl Acad Sci U S A 111:4838–4843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovtun O, Mureev S, Johnston W, Alexandrov K (2010) Towards the construction of expressed proteomes using a Leishmania tarentolae based cell-free expression system. PLoS One 5:e14388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovtun O et al (2011) Leishmania cell-free protein expression system. Methods 55:58–64

    Article  CAS  PubMed  Google Scholar 

  • Kwon Y-C, Jewett MC (2015) High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci Rep 5:8663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafleur LK et al (2016) A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip 16:3777–3787

    Article  CAS  PubMed  Google Scholar 

  • Lavickova B, Maerkl SJ (2019) A simple, robust, and low-cost method to produce the PURE cell-free system. ACS Synth Biol. 8(2):455–462. https://pubs.acs.org/doi/10.1021/acssynbio.8b00427

    Article  CAS  PubMed  Google Scholar 

  • Levskaya A et al (2005) Engineering Escherichia coli to see light – these smart bacteria `photograph’ a light pattern as a high-definition chemical image. Nature 438:441–442

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang H, Kwon Y-C, Jewett MC (2017a) Establishing a high yielding streptomyces – based cell-free protein synthesis system. Biotechnol Bioeng 114:1343–1353

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Fan P, Zhou S, Zhang L (2017b) Loop-mediated isothermal amplification (LAMP): a novel rapid detection platform for pathogens. Microb Pathog 107:54–61

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang H, Jewett MC (2018) Expanding the palette of Streptomyces -based cell-free protein synthesis systems with enhanced yields. Biochem Eng J 130:29–33

    Article  CAS  Google Scholar 

  • Liu DV, Zawada JF, Swartz JR (2005) Streamlining Escherichia coli S30 extract preparation for economical cell-free protein synthesis. Biotechnol Prog 21:460–465

    Article  CAS  PubMed  Google Scholar 

  • Lobato IM, O’Sullivan CK (2018) Recombinase polymerase amplification: basics, applications and recent advances. TrAC Trends Anal Chem 98:19–35

    Article  CAS  Google Scholar 

  • Lopez R, Wang R, Seelig G (2018) A molecular multi-gene classifier for disease diagnostics. Nat Chem 10:746–754

    Article  CAS  PubMed  Google Scholar 

  • Lucks JB, Qi L, Mutalik VK, Wang D, Arkin AP (2011) Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc Natl Acad Sci 108:8617–8622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin RW et al (2017) Development of a CHO-based cell-free platform for synthesis of active monoclonal antibodies. ACS Synth Biol 6:1370–1379

    Article  CAS  PubMed  Google Scholar 

  • Matthaei JH, Nirenberg MW (1961) Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc Natl Acad Sci U S A 47:1580–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthaei JH, Jones OW, Martin RG, Nirenberg MW (1962) Characteristics and composition of RNA coding units. Proc Natl Acad Sci U S A 48:666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrotra P (2016) Biosensors and their applications – a review. J Oral Biol Craniofacial Res 6:153–159

    Article  Google Scholar 

  • Mikami S, Masutani M, Sonenberg N, Yokoyama S, Imataka H (2006) An efficient mammalian cell-free translation system supplemented with translation factors. Protein Expr Purif 46:348–357

    Article  CAS  PubMed  Google Scholar 

  • Moglich A, Ayers RA, Moffat K (2009) Design and signaling mechanism of light-regulated histidine kinases. J Mol Biol 385:1433–1444

    Article  CAS  PubMed  Google Scholar 

  • Moore MD, Jaykus L-A (2017) Development of a recombinase polymerase amplification assay for detection of epidemic human noroviruses. Sci Rep 7:40244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore SJ, Lai H-E, Needham H, Polizzi KM, Freemont PS (2017) Streptomyces venezuelae TX-TL – a next generation cell-free synthetic biology tool. Biotechnol J 12:1600678

    Article  CAS  Google Scholar 

  • Moore SJ et al (2018) Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria. Proc Natl Acad Sci 115:E4340–E4349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Article  CAS  PubMed  Google Scholar 

  • Mullis K et al (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51(Pt 1):263–273

    Article  CAS  PubMed  Google Scholar 

  • Mutalik VK, Qi L, Guimaraes JC, Lucks JB, Arkin AP (2012) Rationally designed families of orthogonal RNA regulators of translation. Nat Chem Biol 8:447–454

    Article  CAS  PubMed  Google Scholar 

  • Myhrvold C et al (2018) Field-deployable viral diagnostics using CRISPR-Cas13. Science 360:444–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirenberg MW, Matthaei JH (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A 47:1588–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu S, Jiang Y, Zhang S (2010) Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification. Chem Commun 46:3089–3091

    Article  CAS  Google Scholar 

  • Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci U S A 101:17669–17674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Notomi T et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nourian Z, Danelon C (2013) Linking genotype and phenotype in protein synthesizing liposomes with external supply of resources. ACS Synth Biol 2:186–193

    Article  CAS  PubMed  Google Scholar 

  • Nyan D-C, Swinson KL (2016) A novel multiplex isothermal amplification method for rapid detection and identification of viruses. Sci Rep 5:17925

    Article  CAS  Google Scholar 

  • Ohlendorf R, Vidavski RR, Eldar A, Moffat K, Moeglich A (2012) From dusk till dawn: one-plasmid systems for light-regulated gene expression. J Mol Biol 416:534–542

    Article  CAS  PubMed  Google Scholar 

  • Ong WQ, Citron YR, Sekine S, Huang B (2017) Live cell imaging of endogenous mRNA using RNA-based fluorescence ‘Turn-On’ probe. ACS Chem Biol 12:200–205

    Article  CAS  PubMed  Google Scholar 

  • Orbach R, Remacle F, Levine RD, Willner I (2012) Logic reversibility and thermodynamic irreversibility demonstrated by DNAzyme-based Toffoli and Fredkin logic gates. Proc Natl Acad Sci 109:21228–21233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oriero EC, Jacobs J, Van Geertruyden JP, Nwakanma D, D’Alessandro U (2015) Molecular-based isothermal tests for field diagnosis of malaria and their potential contribution to malaria elimination. J Antimicrob Chemother 70:2–13

    Article  CAS  PubMed  Google Scholar 

  • Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paige JS, Nguyen-Duc T, Song W, Jaffrey SR (2012) Fluorescence imaging of cellular metabolites with RNA. Science 335:1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardee K et al (2014) Paper-based synthetic gene networks. Cell 159:940–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardee K et al (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components in brief. Cell 165(5):1255–1266

    Article  CAS  PubMed  Google Scholar 

  • Pham HM, Nakajima C, Ohashi K, Onuma M (2005) Loop-mediated isothermal amplification for rapid detection of Newcastle disease virus. J Clin Microbiol 43:1646–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:e204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porchetta A, Vallée-Bélisle A, Plaxco KW, Ricci F (2013) Allosterically tunable, DNA-based switches triggered by heavy metals. J Am Chem Soc 135:13238–13241

    Article  CAS  PubMed  Google Scholar 

  • Porchetta A et al (2018) Programmable nucleic acid nanoswitches for the rapid, single-step detection of antibodies in bodily fluids. J Am Chem Soc 140:947–953

    Article  CAS  PubMed  Google Scholar 

  • Rawson DM, Willmer AJ, Turner AP (1989) Whole-cell biosensors for environmental monitoring. Biosensors 4:299–311

    Article  CAS  PubMed  Google Scholar 

  • Riglar DT et al (2017) Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat Biotechnol 35:653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigo G, Landrain TE, Jaramillo A (2012) De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proc Natl Acad Sci 109:15271–15276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez NM et al (2015) Paper-based RNA extraction, in situ isothermal amplification, and lateral flow detection for low-cost, rapid diagnosis of Influenza A (H1N1) from clinical specimens. Anal Chem 87:7872–7879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proc Natl Acad Sci U S A. (2009) 106(36):15514 PMID: 17709748

    Google Scholar 

  • Rooney JE, Gurpur PB, Burkin DJ (2009) Correction for win and smolke, a modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci 106:15514 PMID: 17709748

    Google Scholar 

  • Rosenblum G, Cooperman BS (2014) Engine out of the chassis: cell-free protein synthesis and its uses. FEBS Lett 588:261–268

    Article  CAS  PubMed  Google Scholar 

  • Salehi ASM et al (2017) Cell-free protein synthesis approach to biosensing hTRβ-specific endocrine disruptors. Anal Chem 89:3395–3401

    Article  CAS  PubMed  Google Scholar 

  • Salehi ASM et al (2018) Biosensing estrogenic endocrine disruptors in human blood and urine: a RAPID cell-free protein synthesis approach. Toxicol Appl Pharmacol 345:19–25

    Article  CAS  PubMed  Google Scholar 

  • Sato S et al (2015) Live-cell imaging of endogenous mRNAs with a small molecule. Angew Chemie-International Ed 54:1855–1858

    Article  CAS  Google Scholar 

  • Schmid SR, Sheth RU, Wu A, Tabor JJ (2014) Refactoring and optimization of light-switchable Escherichia coli two-component systems. ACS Synth Biol 3:820–831

    Article  CAS  Google Scholar 

  • Schweet R, Lamfrom H, Allen E (1958) The synthesis of hemoglobin in a cell-free system. Proc Natl Acad Sci U S A 44:1029–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seok Y et al (2017) A paper-based device for performing loop-mediated isothermal amplification with real-time simultaneous detection of multiple DNA targets. Theranostics 7:2220–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu Y et al (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755

    Article  CAS  PubMed  Google Scholar 

  • Shimizu-Sato S, Huq E, Tepperman JM, Quail PH (2002) A light-switchable gene promoter system. Nat Biotechnol 20:1041–1044

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Noireaux V (2012) An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth Biol 1:29–41

    Article  CAS  PubMed  Google Scholar 

  • Slomovic S, Pardee K, Collins JJ (2015) Synthetic biology devices for in vitro and in vivo diagnostics. PNAS 112:14429–14435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MT, Berkheimer SD, Werner CJ, Bundy BC (2014) Lyophilized Escherichia coli-based cell-free systems for robust, high-density, long-term storage. BioTechniques 56:186–193

    Article  CAS  PubMed  Google Scholar 

  • Song W, Strack RL, Jaffrey SR (2013) Imaging bacterial protein expression using genetically encoded RNA sensors. Nat Methods 10:873–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song W et al (2017) Imaging RNA polymerase III transcription using a photostable RNA-fluorophore complex. Nat Chem Biol 13:1187–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strack RL, Song W, Jaffrey SR (2014) Using spinach-based sensors for fluorescence imaging of intracellular metabolites and proteins in living bacteria. Nat Protoc 9:146–155

    Article  CAS  PubMed  Google Scholar 

  • Sun ZZ et al (2013) Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology. J Vis Exp: e50762. https://doi.org/10.3791/50762

  • Svensen N, Jaffrey SR (2016) Fluorescent RNA aptamers as a tool to study RNA-modifying enzymes. Cell Chem Biol 23:415–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabor JJ et al (2009) A synthetic genetic edge detection program. Cell 137:1272–1281

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabor JJ, Levskaya A, Voigt CA (2011) Multichromatic control of gene expression in Escherichia coli. J Mol Biol 405:315–324

    Article  CAS  PubMed  Google Scholar 

  • Takahashi MK et al (2015) Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems. ACS Synth Biol 4:503–515

    Article  CAS  PubMed  Google Scholar 

  • Torella JP et al (2013) Tailored fatty acid synthesis via dynamic control of fatty acid elongation. Proc Natl Acad Sci U S A 110:11290–11295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran K et al (2018) Cell-free production of a therapeutic protein: expression, purification, and characterization of recombinant streptokinase using a CHO lysate. Biotechnol Bioeng 115:92–102

    Article  CAS  PubMed  Google Scholar 

  • Trang PTK, Berg M, Viet PH, Van Mui N, Van Der Meer JR (2005) Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol 39:7625–7630

    Article  CAS  PubMed  Google Scholar 

  • Tuckey C, Asahara H, Zhou Y, Chong S (2014) Protein synthesis using a reconstituted cell-free system. Curr Protoc Mol Biol 108:16.31.1–16.3122

    Article  Google Scholar 

  • Turner APF, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications. Oxford University Press, New York

    Google Scholar 

  • van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522

    Article  PubMed  CAS  Google Scholar 

  • Villarreal F et al (2018) Synthetic microbial consortia enable rapid assembly of pure translation machinery. Nat Chem Biol 14:29–35

    Article  CAS  PubMed  Google Scholar 

  • Wang JS, Zhang DY (2015) Simulation-guided DNA probe design for consistently ultraspecific hybridization. Nat Chem 7:545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Elbaz J, Teller C, Willner I (2011a) Amplified detection of DNA through an autocatalytic and catabolic DNAzyme-mediated process. Angew Chem Int Ed 50:295–299

    Article  CAS  Google Scholar 

  • Wang F, Elbaz J, Orbach R, Magen N, Willner I (2011b) Amplified analysis of DNA by the autonomous assembly of polymers consisting of DNAzyme wires. J Am Chem Soc 133:17149–17151

    Article  CAS  PubMed  Google Scholar 

  • Wang JS, Yan YH, Zhang DY (2017) Modular probes for enriching and detecting complex nucleic acid sequences. Nat Chem 9:1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Li J, Jewett MC (2018) Development of a Pseudomonas putida cell-free protein synthesis platform for rapid screening of gene regulatory elements. Synth Biol 3(1):ysy003. https://academic.oup.com/synbio/article/3/1/ysy003/4994521

  • Wen KY et al (2017) A cell-free biosensor for detecting quorum sensing molecules in P. Aeruginosa-infected respiratory samples. ACS Synth Biol 6:2293–2301

    Article  CAS  PubMed  Google Scholar 

  • Wiegand DJ, Lee HH, Ostrov N, Church GM (2018) Establishing a cell-free Vibrio natriegens expression system. bioRxiv 331645. https://doi.org/10.1101/331645

  • Xia F et al (2010) An electrochemical supersandwich assay for sensitive and selective DNA detection in complex matrices. J Am Chem Soc 132:14346–14348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem 117:5592–5595

    Article  Google Scholar 

  • Xiao Y, Rowe AA, Plaxco KW (2007a) Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J Am Chem Soc 129:262–263

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Lai RY, Plaxco KW (2007b) Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nat Protoc 2:2875

    Article  CAS  PubMed  Google Scholar 

  • Xing W et al (2017) Field evaluation of a recombinase polymerase amplification assay for the diagnosis of Schistosoma japonicum infection in Hunan province of China. BMC Infect Dis 17:164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu W, Deng R, Wang L, Li J (2014) Multiresponsive rolling circle amplification for DNA logic gates mediated by endonuclease. Anal Chem 86:7813–7818

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka ES, Tortajada-Genaro LA, Pastor N, Maquieira Á (2018) Polymorphism genotyping based on loop-mediated isothermal amplification and smartphone detection. Biosens Bioelectron 109:177–183

    Article  CAS  PubMed  Google Scholar 

  • Yang WC, Patel KG, Wong HE, Swartz JR (2012) Simplifying and streamlining Escherichia coli-based cell-free protein synthesis. Biotechnol Prog 28:413–420

    Article  CAS  PubMed  Google Scholar 

  • Yen L et al (2004) Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431:471–476

    Article  CAS  PubMed  Google Scholar 

  • Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451:318

    Article  CAS  PubMed  Google Scholar 

  • Ying ZM, Wu Z, Tu B, Tan W, Jiang JH (2017) Genetically encoded fluorescent RNA sensor for ratiometric imaging of MicroRNA in living tumor cells. J Am Chem Soc 139:9779–9782

    Article  CAS  PubMed  Google Scholar 

  • You M, Litke JL, Jaffrey SR (2015) Imaging metabolite dynamics in living cells using a spinach-based riboswitch. Proc Natl Acad Sci U S A 112:E2756–E2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Canoura J, Guntupalli B, Lou X, Xiao Y (2017) A cooperative-binding split aptamer assay for rapid, specific and ultra-sensitive fluorescence detection of cocaine in saliva. Chem Sci 8:131–141

    Article  CAS  PubMed  Google Scholar 

  • Zamecnik PC, Frantz ID (1948) Incorporation in vitro of radioactive carbon from carboxyl-labeled dl-alanine and glycine into proteins of normal and malignant rat livers. J Biol Chem 175:299–314

    CAS  PubMed  Google Scholar 

  • Zawada J, Swartz J (2006) Effects of growth rate on cell extract performance in cell-free protein synthesis. Biotechnol Bioeng 94:618–624

    Article  CAS  PubMed  Google Scholar 

  • Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3:103

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-B, Kong R-M, Lu Y (2011) Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem 4:105–128

    Article  CAS  Google Scholar 

  • Zhang F, Carothers JM, Keasling JD (2012a) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359

    Article  CAS  PubMed  Google Scholar 

  • Zhang DY, Chen SX, Yin P (2012b) Optimizing the specificity of nucleic acid hybridization. Nat Chem 4:208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Hejesen C, Kjelstrup MB, Birkedal V, Gothelf KV (2014) A DNA-mediated homogeneous binding assay for proteins and small molecules. J Am Chem Soc 136:11115–11120

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Chen F, Li Q, Wang L, Fan C (2015) Isothermal amplification of nucleic acids. Chem Rev 115:12491–12545

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Saran R, Liu J (2017) Metal sensing by DNA. Chem Rev 117:8272–8325

    Article  CAS  PubMed  Google Scholar 

  • Zubay G (1973) In vitro synthesis of protein in microbial systems. Annu Rev Genet 7:267–287

    Article  CAS  PubMed  Google Scholar 

  • Zuo X, Xiao Y, Plaxco KW (2009) High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc 131:6944–6945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander A. Green or Keith Pardee .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tinafar, A. et al. (2020). Cell-Free Biosensors: Synthetic Biology Without Borders. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_130-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_130-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics