Skip to main content

Electrodes for Cell Sensors Interfacing

  • Living reference work entry
  • First Online:
Handbook of Cell Biosensors

Abstract

In this chapter, we present a comprehensive review of the electrodes that were used, are used, or can be used for bioelectrochemical cell sensors. Such sensors are based on the functional response of living cells, e.g., microbes, yeast, mammalian cells, plant cells, etc. This chapter focuses on the electrical and bioelectrochemical response where electrodes are important components in the bioelectric and bioelectrochemical signal path. Electrodes are integrated with the micro systems to pick up the signal generated by the cells, which can be dispersed in an aqueous solution or immobilized on (or near) the electrodes. There are numerous methods for cell sensors immobilization, for example, embedding in natural polymers (e.g., agar-agar) that is deposited on the electrode, attaching to polymer beads that are attached to the electrodes, or bound to the electrodes using specific chemistry. In this chapter, we review the electrode concepts, materials, designs, and process integration methods using 2D and 3D patterning methods. We review both passive and active electrodes, discussing the role of low-impedance three-electrode configuration (e.g., working, auxiliary, and reference electrodes) as well as high-impedance capacitance and field-effect devices. The different sections are accompanied by examples demonstrating the highlights and problems in the various electrode-based whole cell biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmad M, Zhu AJ (2011) ZnO bnased advanced functional nanostructures: synthesis, properties and applications. J Mater Chem 21(3):599–614

    CAS  Google Scholar 

  • Ahmad M, Pan C, Iqbal J, Gan L, Zhu AJ (2009) Bulk synthesis route of the oriented arrays of tip-shape ZnO nanowires and an investigation of their sensing capabilities. Chem Phys Lett 480(1):105–109

    CAS  Google Scholar 

  • Almog RO, Sverdlov Y, Fishelson N, Shmilovich T, Rabinovich E, Shacham-Diamand YY (2010) Electrochemical micro technologies for polymeric MEMS and biochip applications. ECS Trans 25(16):17–21

    CAS  Google Scholar 

  • Bai Q, Wise KD, Anderson DJ (2000) A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans Biomed Eng 47(3):281–289

    CAS  PubMed  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, p 864

    Google Scholar 

  • Beica R, Sharbono C, Ritzdorf T (2008) Through silicon via copper electrodeposition for 3D integration. Proc Electron Compon Technol Conf 406:577–583

    Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6(3):206–212

    CAS  PubMed  Google Scholar 

  • Ben-Yoav H, Ofek Almog R, Sverdlov Y, Sternheim M, Belkin S, Freeman A, Shacham-Diamand Y (2012) Modified working electrodes for electrochemical whole-cell microchips. Electrochim Acta 82:109–114

    CAS  Google Scholar 

  • Bousse L (1996) Whole cell biosensors. Sens Actuators B 34(1–3):270–275

    CAS  Google Scholar 

  • Bouwen W, Thoen P, Vanhoutte F, Bouckaert S, Despa F, Weidele H, …, Lievens P (2000) Production of bimetallic clusters by a dual-target dual-laser vaporization source. Rev Scient Instr 71(1):54–58

    Google Scholar 

  • Chang C, Chiu N, Lin D, Chu-Su Y, Liang Y, Lin AC (2010) High sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin films surface plasmon resonance-based biosensor. Anal Chem 82(4):1207–1212

    CAS  PubMed  Google Scholar 

  • Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17(6–7):441–456

    CAS  PubMed  Google Scholar 

  • Choi J-W, Rosset S, Niklaus M, Adleman JR, Shea H, Psaltis D (2010) 3-Dimensional electrode patterning within a microfluidic channel using metal ion implantation. Lab Chip 10(6):783–788

    CAS  PubMed  Google Scholar 

  • Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    CAS  PubMed  Google Scholar 

  • Cosentino S, Fiaschi G, Strano V, Hu KJ, Liao TW, Mintz Hemed N et al (2017) Role of Au x Pt1–x clusters in the enhancement of the electrochemical activity of ZnO nanorod electrodes. J Phys Chem C 121(29):15644–15652

    Google Scholar 

  • Couniot N, Francis LA, Flandre D (2016) A 16$\times $16 CMOS capacitive biosensor array towards detection of single bacterial cell. IEEE Trans Biomed Circuits Syst 10(2):364–374

    PubMed  Google Scholar 

  • Dai Z, Shao G, Hong J, Bao J, Shen AJ (2009) Immobilizatoin and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor. Biosens Bioelectron 24(5):1286–1291

    CAS  PubMed  Google Scholar 

  • Dara RO, Jenkinson N, Banks CE (2009) Characterisation of commercially available electrochemical sensing platforms. Sens Actuators B 138(2):556–562

    Google Scholar 

  • Dixit P, Miao J (2006) Aspect-ratio-dependent copper electrodeposition technique for very high aspect-ratio through-hole plating. J Electrochem Soc 153(6):G552

    CAS  Google Scholar 

  • Eller A (1996) Amperometric biosensors. Curr Opin Biotechnol 7(1):50–54

    Google Scholar 

  • Fiaschi G (2018) FET based whole cell sensor, PhD thesis, Tel Aviv University

    Google Scholar 

  • Fiaschi G, Cosentino S, Pandey R, Mirabella S, Strano V, Maiolo L, Grandjean D, Lievens P, Shacham-Diamand Y (2018) J Electroanal Chem 811:89–95

    CAS  Google Scholar 

  • Fulati A, Ali SU, Riaz M, Amin G, Nur O, Willander AM (2010) Miniaturized pH sensor based on zinc oxide nanotubes/nanorods. Anal Chem 82(4):1207–1212

    Google Scholar 

  • Greene BY, Law M, Zitoun D, Yang AP (2006) Solution-grown zinc oxide nanowires. Inorg Chem 42(26):3031–3034

    Google Scholar 

  • Grieshaber D, MacKenziel R, Voros J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8:1400–1458

    CAS  PubMed  Google Scholar 

  • Hahm JI (2011) Functional polymers in protein detection platforms: optical, electrochemical, electrical, mass-sensitive, and magnetic biosensors. Sensors 11(3):3327–3355

    CAS  PubMed  Google Scholar 

  • Han J, Tan Z, Sato K, Shikida M (2004) Three-dimensional interconnect technology on a flexible polyimide film. J Micromech Microeng 14(1):38–48

    CAS  Google Scholar 

  • Harnett CK, Satyalakshmi KM, Craighead HG (2001) Bioactive templates fabricated by low-energy electron beam lithography of self-assembled monolayers. Langmuir 17(1):178–182

    CAS  Google Scholar 

  • Hemed NM, Convertino A, Shacham-Diamand Y (2016a) Investigation of functionalized silicon nanowires by self-assembled monolayer. Appl Surf Sci 367:231–236

    CAS  Google Scholar 

  • Hemed NM, Yoetz-Kopelman T, Convertino A, Shacham-Diamand Y (2016b) Performance of whole-cell electrochemical biosensor using integrated microbes/Si Nano-Forest structure. ECS Trans 75(16):157–164

    CAS  Google Scholar 

  • Hillman T, Badi AN, Normann RA, Kertesz T, Shelton C (2003) Cochlear nerve stimulation with a 3-dimensional penetrating electrode array. Otol Neurotol 24(5):764–768

    PubMed  Google Scholar 

  • Israr M, Sadaf J, Nur O, Willander M, Salman S, Danielsson AB (2011) Chemically fashioned ZnO nanoealls and their potential application for potentiometric cholesterol biosensor. Appl Phys Lett 98(25):253705

    Google Scholar 

  • Jo BH, Van Lerberghe LM, Motsegood KM, Beebe DJ (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst 9(1):76–81

    CAS  Google Scholar 

  • Johansson T, Abbasi M, Huber RJ, Normann RA (1992) A three-dimensional architecture for a parallel processing photosensing array. IEEE Trans Biomed Eng 39(12):1292–1297

    CAS  PubMed  Google Scholar 

  • Kahn R, Kaushik A, Solanki P, Ansari A, Pandey M, Malhotra AB (2008) Zinc-oxide nanoparticle-chitosan composite film for cholesterol biosensor. Anal Chim Acta 616(2):207–213

    Google Scholar 

  • Kang MG, Joon Park H, Hyun Ahn S, Jay GL (2010) Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells. Sol Energy Mater Sol Cells 94(6):1179–1184

    CAS  Google Scholar 

  • Kim G, Park J, Lee W, Yi C (2006) ZnO nanorod biosensor for highly sensitive detection of specific protein binding. J Korean Phys Soc 49(4):1635–1639

    CAS  Google Scholar 

  • Kim ET, Seo J-M, Woo SJ, Zhou JA, Chung H, Kim SJ (2008) Fabrication of pillar shaped electrode arrays for artificial retinal implants. Sensors 8(9):5845–5856

    CAS  PubMed  Google Scholar 

  • Liu CC (1993) Applications of microfabrication techniques in electrochemical sensor development. Appl Biochem Biotechnol 41(1–2):99–107

    CAS  PubMed  Google Scholar 

  • Liu X, Hu Q, Wu Q, Zhang W, Fang Z, Xie AQ (2009) Aligned ZnO nanorods: a useful film to fabricate amperometric glucose biosensor. Colloids Surf B Biointerfaces 74(1):154–158

    CAS  PubMed  Google Scholar 

  • Liu F, Piao Y, Choi JS, Seo TS (2013) Three-dimensional graphene micropillar based electrochemical sensor for phenol detection. Biosens Bioelectron 50:387–392

    CAS  PubMed  Google Scholar 

  • Luo XL, Morrin A, Killard AJ, Smyth MR (2006) Electroanalysis 18:319

    CAS  Google Scholar 

  • Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26(5):492–500

    CAS  PubMed  Google Scholar 

  • Maiolo L, Mirabella S, Maita F, Alberti A, Minotti A, Strano V, Pecora A, Shacham-Diamand Y (2014) Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls. Appl Phys Lett 105(9):93501

    Google Scholar 

  • McLamore ES, Porterfield DM (2011) Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing. Chem Soc Rev 40:5308

    CAS  PubMed  Google Scholar 

  • Meadows D (1996) Recent developments with biosensing technology and applications in the pharmaceutical industry. Adv Drug Deliv Rev 21(3):179–189

    CAS  Google Scholar 

  • Mehrotra P (2016a) Biosensors and their applications – a review. J Oral Biol Craniofacial Res 6(2):153–159

    Google Scholar 

  • Mehrotra P (2016b) Biosensors and their applications – a review. J Oral Biol Craniofacial Res 6(2):153–159

    Google Scholar 

  • Melamed S, Elad T, Belkin S (2012) Microbial sensor cell arrays. Curr Opin Biotechnol 23(1):2–8

    CAS  PubMed  Google Scholar 

  • Mintz-Hemed N, Yoetz-Kopelman T, Convertino A, Freeman A, Shacham-Diamand Y (2017) Whole-cell electrochemical biosensor integrating microbes with Si nanowire-Forest. J Electrochem Soc 164(6):B253–B257

    CAS  Google Scholar 

  • Motoyoshi M, Koyanagi M (2009) 3D-LSI technology for image sensor. J Instrum 4(03):23–26

    Google Scholar 

  • Pai RS, Walsh KM, Crain MM et al (2009) Fully integrated three-dimensional electrodes for electrochemical detection in microchips: fabrication, characterization, and applications. Anal Chem 81(12):4762–4769

    CAS  PubMed  Google Scholar 

  • Pal U, Santiago AP (2005) Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. J Phys Chem B 109(32):15317–15321

    CAS  PubMed  Google Scholar 

  • Pandey R, Almog RO, Sverdlov Y, Shacham-Diamand Y (2017) Self-aligned electrochemical fabrication of gold nanoparticle decorated polypyrrole electrode for alkaline phosphatase enzyme biosensing. J Electrochem Soc 164(4):B168–B175

    CAS  Google Scholar 

  • Pandey R, Friedberg S, Beggiato M, Sverdlov Y, Lishnevsky K, Demarchi D, Shacham-Diamand Y (2018a) Highly conductive copper film on inkjet-printed porous silver seed for flexible electronics. J Electrochem Soc 165(5):D236–D242

    CAS  Google Scholar 

  • Pandey R, Teig-Sussholz O, Schuster S, Avni A, Shacham-Diamanda Y (2018b) Integrated electrochemical chip-on-plant functional sensor for monitoring gene expression under stress. Accepted Publ J Biosens Bioelectron 117:493–500

    CAS  Google Scholar 

  • Park J, Kim B (2012) 3D micro patterning on a concave substrate for creating the replica of a cylindrical PDMS stamp. Microelectron Eng 98:540–543

    CAS  Google Scholar 

  • Park TH, Shuler ML (2003) Integration of cell culture and microfabrication technology. Biotechnol Prog 19(607):243–253

    CAS  PubMed  Google Scholar 

  • Pavesi A, Piraino F, Fiore GB, Farino KM, Moretti M, Rasponi M (2011) How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Lab Chip 11(9):1593–1595

    CAS  PubMed  Google Scholar 

  • Ragones H, Schreiber D, Inberg A, Berkh O, Kósa G, Shacham-Diamand Y (2015a) Processing issues and the characterization of soft electrochemical 3D sensor. Electrochim Acta 183:125–129

    CAS  Google Scholar 

  • Ragones H, Schreiber D, Inberg A, Berkh O, Kósa G, Freeman A, Shacham-Diamand Y (2015b) Disposable electrochemical sensor prepared using 3D printing for cell and tissue diagnostics. Sens Actuators B 216:434–442

    CAS  Google Scholar 

  • Rahman M, Ahammad A, Jin J, Ahn S, Lee AJ (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10(5):4855–4886

    CAS  PubMed  Google Scholar 

  • Rajaraman S, Choi SO, McClain MA, Ross JD, Laplaca MC, Allen MG (2011) Metal-transfer-micromolded three-dimensional microelectrode arrays for in-vitro brain-slice recordings. J Microelectromech Syst 20(2):396–409

    Google Scholar 

  • Rajesh AT, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuators B 136:275–286

    CAS  Google Scholar 

  • Ren X, Chen D, Meng X, Tang F, Hou X, Han D, Zhang AL (2009) Zinc oxide nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor. J Colloid Interface Sci 334(2):183–187

    CAS  PubMed  Google Scholar 

  • Rnkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763

    Google Scholar 

  • Sato H, Yoshimine K, Otsuka T, Shoji S (2007) Interdigitated array 3D micromesh electrodes for electrochemical sensors. J Micromech Microeng 17(5):909–914

    CAS  Google Scholar 

  • Shacham-Diamand Y, Osaka T, Datta M, Ohba T (eds) (2009) Advanced nanoscale ULSI interconnects: fundamentals and applications. Springer, New York

    Google Scholar 

  • Singh P (2016) SPR biosensors: historical perspectives and current challenges. Sens Actuators B 229:110–130

    CAS  Google Scholar 

  • Soper SA et al (2006) Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens Bioelectron 21:1932–1942

    CAS  PubMed  Google Scholar 

  • Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788–1799

    CAS  PubMed  Google Scholar 

  • Timko BP, Cohen-Karni T, Qing Q, Tian B, Lieber CM (2010) Design and implementation of functional nanoelectronic interfaces with biomolecules, cells, and tissue using nanowire device arrays. IEEE Trans Nanotechnol 9(3):269–280

    PubMed  PubMed Central  Google Scholar 

  • Tong Y, Liu Y, Dong L, Zhao D, Zhang J, Lu Y, Shen D, Fan AX (2006) Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J Phys Chem B 110(41):20263–20267

    CAS  PubMed  Google Scholar 

  • Thevenot DR, Toth K, Durst R, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    CAS  PubMed  Google Scholar 

  • Trano VS, Urso R, Scuderi M, Iwu K, Simone F, Ciliberto E, Spinella C, Mirabella AS (2014) Double role of HMTA in ZnO nanorods grown by chemical bath deposition. J Phys Chem C 118(48):28189–28195

    Google Scholar 

  • Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196

    CAS  PubMed  Google Scholar 

  • Turner APF, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications. Oxford University Press, New York

    Google Scholar 

  • Umar A, Rahman M, Vaseem M, Hahn AY (2009) Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem Commun 11(1):118–121

    CAS  Google Scholar 

  • Urmann K, Arshavsky-Graham S, Walter JG, Scheper T, Segal E (2016) Whole-cell detection of live lactobacillus acidophilus on aptamer-decorated porous silicon biosensors. Analyst 141(18):5432–5440

    CAS  PubMed  Google Scholar 

  • Verma A (2006) Oxygen-sensing in tumors. Curr Opin Clin Nutr Metab Care 9(4):366–378

    CAS  PubMed  Google Scholar 

  • Wang J (2001) Analytical electrochemistry, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21(10):1887–1892

    CAS  PubMed  Google Scholar 

  • Wang J (2008) Electrochemical glucose biosensors. Electrochem Sensors Biosens Biomed Appl 57–69

    Google Scholar 

  • Wang W-C (2014) Polymeric micro sensors and actuators. Sensors 14(8):15065–15066

    PubMed  Google Scholar 

  • Wang J, Sun X, Wei A, Lei Y, Cai X, Li C, Dong AZL (2006) Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett 88(23):233106

    Google Scholar 

  • Wang X, Wang F, Yang W, Yang AX (2007) A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface. Chem Commun 42:4419–4421

    Google Scholar 

  • Weber J, Jeedigunta S, Kumar AA (2008) Fabrication and characterization of ZnO nanowire arrays with an investigation into electrochemical sensing capabilities. J Nanomater 2008:75

    Google Scholar 

  • Wei A, Sun X, Wang J, Lei Y, Cai X, Li C, Dong Z, Huang AW (2006) Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl Phys Lett 89(12):123902

    Google Scholar 

  • Willander M, Klason P, Yang L, Al-Hilli S, Zhao Q, Nur AO (2008) ZnO nanowires chemical growth, electrodeposition, and application to intracellular nano-sensors. Phys Status Solidi C 5(9):3076–3083

    CAS  Google Scholar 

  • Xiao T, Wu F, Hao J, Zhang M, Yu P, Mao L (2017) In vivo analysis with electrochemical sensors and biosensors. Anal Chem 89(1):300–313

    CAS  PubMed  Google Scholar 

  • Yang K, Shhe G, Wang H, Ou X, Zang X, Lee C, Lee AS (2009) ZnO nanotube arrays as biosensors for glucose. J Phys Chem C 113(47):20169–20172

    CAS  Google Scholar 

  • Yoetz-Kopelman T, Porat-Ophir C, Shacham-Diamand Y, Freeman A (2016a) Whole-cell amperometric biosensor for screening of cytochrome P450 inhibitors. Sens Actuators B 223:392–399

    CAS  Google Scholar 

  • Yoetz-Kopelman T, Porat-Ophir C, Shacham-Diamand Y, Freeman A (2016b) Whole-cell amperometric biosensor for screening of cytochrome P450 inhibitors. Sens Actuators B 223:932–399

    Google Scholar 

  • Yogeswaran U, Chen SM (2008) A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8(1):290–313

    CAS  PubMed  Google Scholar 

  • You T, Niwa O, Tomita M, Hirono S (2003a) Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Anal Chem 75:2080–2085

    CAS  PubMed  Google Scholar 

  • You T et al (2003b) An Amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal Chem 75:5191–5196

    CAS  PubMed  Google Scholar 

  • Yu T (2009) Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem Commun 11(1):202–205

    Google Scholar 

  • Ziegler C (1998) and W. Göpel. Biosensor development. Curr Opin Chem Biol 2(5):585–591

    CAS  PubMed  Google Scholar 

  • Zou Y, Pisciotta J, Baskakov IV (2010) Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells. Bioelectrochemistry 79(1):50–56

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant no. 607417 (CATSENSE).

This research was also supported by the Israel Science Foundation (grant no. 1616/17).

We would also like to acknowledge the Boris Mints Institute for Strategic Policy Solutions to Global Challenges, the Department of Public Policy and the Manna Centre for Food Security, Tel Aviv University for their generous support under the program “Plant based heat stress whole-cell-biosensor” (grant no. 590351) 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosi Shacham-Diamand .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ben-Yoav, H., Ragones, H., Pandey, R., Fiaschi, G., Shacham-Diamand, Y. (2020). Electrodes for Cell Sensors Interfacing. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_125-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_125-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics