Skip to main content

Systematic Design of a Quorum Sensing-Based Biosensor for the Detection of Metal Ions in Escherichia coli

  • Living reference work entry
  • First Online:
  • 327 Accesses

Abstract

With the recent industrial expansion, heavy metals and other pollutants have increasingly contaminated our living surroundings. The non-degradability of heavy metals may lead to accumulation in food chains, and the resulting toxicity could cause damage in organisms. Hence, detection techniques have gradually received attention. In this study, a quorum sensing (QS)-based amplifier is introduced to improve the detection performance of metal ion biosensing. The design utilizes diffusible signal molecules, which freely pass through the cell membrane into the environment to communicate with others. Bacteria cooperate via the cell-cell communication process, thereby displaying synchronous behavior, even if only a minority of the cells detect the metal ion. In order to facilitate the design, the ability of the engineered biosensor to detect metal ions is described in a steady-state model. The design can be constructed according to user-oriented specifications by selecting adequate components from corresponding libraries, with the help of a genetic algorithm (GA)-based design method. The experimental results validate enhanced efficiency and detection performance of the quorum sensing-based biosensor of metal ions.

This is a preview of subscription content, log in via an institution.

References

  • Achtman M, Suerbaum S (2001) Helicobacter pylori: molecular and cellular biology. Horizon Scientific, Wymondham

    Google Scholar 

  • Alon U (2007) An introduction to systems biology: Design principles of biological circuits. Chapman & Hall/CRC Press, Boca Raton

    Google Scholar 

  • National Technical Information Service (1980) Ambient water quality criteria for copper. National Technical Information Service, Washington, DC/Springfield

    Google Scholar 

  • Bondarczuk K, Piotrowska-Seget Z (2013) Molecular basis of active copper resistance mechanisms in gram-negative bacteria. Cell Biol Toxicol 29:397–405

    Article  CAS  Google Scholar 

  • Borremans B, Hobman JL, Provoost A, Brown NL, van Der Lelie D (2001) Cloning and functional analysis of the PBR lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658

    Article  CAS  Google Scholar 

  • Brint JM, Ohman DE (1995) Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol 177:7155–7163

    Article  CAS  Google Scholar 

  • Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163

    Article  CAS  Google Scholar 

  • Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12:381–390

    Article  CAS  Google Scholar 

  • Chang YC, Lin CL, Jennawasin T (2013) Design of synthetic genetic oscillators using evolutionary optimization. Evol Bioinform 9:137

    Article  Google Scholar 

  • Chen BS, Wang YC (2006) On the attenuation and amplification of molecular noise in genetic regulatory networks. BMC Bioinform 7:52

    Article  CAS  Google Scholar 

  • Chen B-S, Wang Y-C (2014) Synthetic gene network: modeling, analysis, robust design methods. CRC Press, Boca Raton

    Book  Google Scholar 

  • Chen BS, Cheng YM, Lee CH (1995) A genetic approach to mixed H-2/H-infinity optimal pid control. IEEE Control Syst Mag 15:51–60

    Article  CAS  Google Scholar 

  • Danino T, Mondragon-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463:326–330

    Article  CAS  Google Scholar 

  • Darch SE, West SA, Winzer K, Diggle SP (2012) Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc Natl Acad Sci U S A 109:8259–8263

    Article  CAS  Google Scholar 

  • Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta-Protein Proteom 1703:93–109

    Article  CAS  Google Scholar 

  • Dunlap PV, Kuo A (1992) Cell density-dependent modulation of the Vibrio-fischeri luminescence system in the absence of autoinducer and luxr protein. J Bacteriol 174:2440–2448

    Article  CAS  Google Scholar 

  • Engebrecht J, Silverman M (1984) Identification of genes and gene-products necessary for bacterial bioluminescence. Proc Natl Acad Sci USA Biol Sci 81:4154–4158

    Article  CAS  Google Scholar 

  • Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812

    Article  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria – the luxr-luxi family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    Article  CAS  Google Scholar 

  • Hanzelka BL, Greenberg EP (1996) Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis. J Bacteriol 178:5291–5294

    Article  CAS  Google Scholar 

  • Hartwig A (1995) Current aspects in metal genotoxicity. BioMetals 8:3–11

    Article  CAS  Google Scholar 

  • He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, modeling simulation tools. Bioresour Technol 160:67–78

    Article  CAS  Google Scholar 

  • Hobman JL, Julian DJ, Brown NL (2012) Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, PpbrA, from Cupriavidus metallidurans CH34. BMC Microbiol 12:109

    Article  CAS  Google Scholar 

  • Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio-fischeri luminescence system. J Bacteriol 163:1210–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379

    Article  CAS  Google Scholar 

  • Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC et al (2014) Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc Natl Acad Sci U S A 111:4838–4843

    Article  CAS  Google Scholar 

  • Kyung Hyuk K, Kiri C, Bartley B, Sauro HM (2015) Controlling E. coli gene expression noise. IEEE Trans Biomed Circuits Syst 9(4):497–504

    Article  Google Scholar 

  • Lee SM, Grass G, Rensing C, Barrett SR, Yates CJD, Stoyanov JV et al (2002) The PCO proteins are involved in periplasmic copper handling in Escherichia coli. Biochem Biophys Res Commun 295:616–620

    Article  CAS  Google Scholar 

  • Migaszewski ZM, Galuszka A (2015) The characteristics, occurrence, geochemical behavior of rare earth elements in the environment: a review. Crit Rev Environ Sci Technol 45:429–471

    Article  CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Munson GP, Lam DL, Outten FW, O’Halloran TV (2000) Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182:5864–5871

    Article  CAS  Google Scholar 

  • Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ngah WSW, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948

    Article  Google Scholar 

  • Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130

    Article  CAS  Google Scholar 

  • Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:1490–1494

    Article  CAS  Google Scholar 

  • Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25:502–508

    Article  CAS  Google Scholar 

  • Ravikumar S, Ganesh I, Yoo IK, Hong SH (2012) Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria. Process Biochem 47:758–765

    Article  CAS  Google Scholar 

  • Rezvani-Boroujeni A, Javanbakht M, Karimi M, Shahrjerdi C, Akbari-adergani B (2015) Immoblization of thiol-functionalized nanosilica on the surface of poly(ether sulfone) membranes for the removal of heavy-metal ions from industrial wastewater samples. Ind Eng Chem Res 54:502–513

    Article  CAS  Google Scholar 

  • Rouch DA, Brown NL (1997) Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. Microbiology 143:1191–1202

    Article  CAS  Google Scholar 

  • Ruby EG (1996) Lesson from a cooperative, bacteria-animal association: The Vibrio fischeri- Euprymna scolopes light organ symbiosis. Annu Rev Microbiol 50:591–624

    Article  CAS  Google Scholar 

  • Ruby EG, Mcfallngai MJ (1992) A squid that glows in the night – development of an animal-bacterial mutualism. J Bacteriol 174:4865–4870

    Article  CAS  Google Scholar 

  • Ruby EG, Nealson KH (1976) Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies. Biol Bull 151:574–586

    Article  CAS  Google Scholar 

  • Silva-Rocha R, de Lorenzo V (2014) Engineering multicellular logic in bacteria with metabolic wires. ACS Synth Biol 3:204–209

    Article  CAS  Google Scholar 

  • Singha AS, Guleria A (2014) Chemical modification of cellulosic biopolymer and its use in removal of heavy metal ions from wastewater. Int J Biol Macromol 67:409–417

    Article  CAS  Google Scholar 

  • Sohka T, Heins RA, Phelan RM, Greisler JM, Townsend CA, Ostermeier M (2009) An externally tunable bacterial band-pass filter. Proc Natl Acad Sci USA 106:10135–10140

    Article  CAS  Google Scholar 

  • Soltani M, Vargas-Garcia CA, Singh A (2015) Conditional moment closure schemes for studying stochastic dynamics of genetic circuits. IEEE Trans Biomed Circuits Syst 9(4):518–526

    Article  Google Scholar 

  • Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456:516–U39

    Article  CAS  Google Scholar 

  • Taghavi S, Mergeay M, Nies D, Vanderlelie D (1997) Alcaligenes eutrophus as a model system for bacterial interactions with heavy metals in the environment. Res Microbiol 148:536–551

    Article  CAS  Google Scholar 

  • Teo JJY, Sung Sik W, Sarpeshkar R (2015) Synthetic biology: a unifying view and review using analog circuits. IEEE Trans Biomed Circuits Syst 9(4):453–474

    Article  Google Scholar 

  • Teodosiu C, Wenkert R, Tofan L, Paduraru C (2014) Advances in preconcentration/removal of environmentally relevant heavy metal ions from water and wastewater by sorbents based on polyurethane foam. Rev Chem Eng 30:403–420

    Article  CAS  Google Scholar 

  • Tetaz TJ, Luke RK (1983) Plasmid-controlled resistance to copper in Escherichia coli. J Bacteriol 154(Jun):1263–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Val DL, Cronan JE (1998) In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the luxi family of autoinducer synthases. J Bacteriol 180:2644–2651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  Google Scholar 

  • Wang BJ, Kitney RI, Joly N, Buck M (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2:508

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bor-Sen Chen .

Editor information

Editors and Affiliations

Section Editor information

Appendix

Appendix

The steady-state model of the metal ion biosensor without QS-based amplifier is as follows:

$$ \left\{\begin{array}{c}{x}_{GSS}=\frac{P_M\left({P}_{u,i},{P}_{l,i},{x}_S,{I}_M\right)}{d+{r}_G}\\ {}{G}_{ss}=\frac{m}{d+r}{x}_G\qquad \end{array}\right. $$
(15)

where xGSS and Gss are the steady-state concentrations of immature and mature reporter proteins, respectively.

Component Libraries

Table 1 Metal ion-induced promoter-RBS component library in E. coli strain DH5α
Table 2 Constitutive promoter-RBS component library in E. coli strain DH5α
Table 3 QS-dependent promoter-RBS component library in E. coli strain DH5α

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, BS. (2019). Systematic Design of a Quorum Sensing-Based Biosensor for the Detection of Metal Ions in Escherichia coli. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_120-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_120-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics