Skip to main content

Stress Response-Based Whole-Cell Biosensor Development: Sentinels, Serendipity, and Circuitry

  • Living reference work entry
  • First Online:
Handbook of Cell Biosensors
  • 271 Accesses

Abstract

By 1970, perhaps the two outstanding examples of global control of gene expression had been described in Escherichia coli, namely, stringent control of ribosome biogenesis and activation of alternative catabolic operons upon glucose exhaustion. In the ensuing decades, a large number of analogous global regulatory circuits were discovered using ever more sophisticated biochemical and genetic techniques. These global regulatory systems included those activated by stresses, be they chemical, physical, biological, or nutritional. Such stress responses serve an adaptive function allowing cells to readjust in a battle to thrive. Thus these responses, often transcriptional, generally are triggered at sublethal levels by still metabolically active cells. In the early 1990s, facile monitoring of stress response induction using easily measured reporter gene products was exploited as early warning systems for a wide range of environmental and toxicological applications. The development of this whole-cell biosensor concept is recounted within the context of interacting societal, economic, and fundamental scientific concerns as well as prior research efforts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ames BN, Lee FD, Durston WE (1973) An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci USA 70:782–786

    Article  CAS  Google Scholar 

  • Blaise C, Forghani R, Legault R et al (1994) A bacterial toxicity assay performed with microplates, microluminometry and Microtox reagent. Biotechniques 16:932–937

    CAS  PubMed  Google Scholar 

  • Bochner BR, Ames BN (1982) Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem 257:9759–9769

    CAS  PubMed  Google Scholar 

  • Casadaban MJ, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4530–4533

    Article  CAS  Google Scholar 

  • Christman MF, Morgan RW, Jacobson FS et al (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753–762

    Article  CAS  Google Scholar 

  • Condee CW, Summers AO (1992) A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. J Bacteriol 174:8094–8101

    Article  CAS  Google Scholar 

  • Croucher NJ, Thompson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13:619–624

    Article  CAS  Google Scholar 

  • Dimster-Denk D, Rine J, Phillips J et al (1999) Comprehensive evaluation of isoprenoid biosynthesis regulation in Saccharomyces cerevisiae utilizing the Genome Reporter Matrix. J Lipid Res 40:850–860

    CAS  PubMed  Google Scholar 

  • Kasai T (1974) Regulation of the expression of the histidine operon in Salmonella typhimurium. Nature 249:523–527

    Article  CAS  Google Scholar 

  • Kenyon CJ, Walker GC (1980) DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc Natl Acad Sci USA 77:2819–2823

    Article  CAS  Google Scholar 

  • Kohno T, Roth J (1979) Electrolyte effects on the activity of mutant enzymes in vivo and in vitro. Biochemistry 18:1386–1392

    Article  CAS  Google Scholar 

  • LaRossa RA (1977) The regulation of leucyl-tRNA synthetase biosynthesis in Escherichia coli K-12. Dissertation, Yale University

    Google Scholar 

  • LaRossa RA (1996) Mutant selections linking physiology, inhibitors and genotypes. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 2527–2587

    Google Scholar 

  • LaRossa RA, Schloss JV (1984) The sulfonylurea herbicide sulfometuron methyl is an extremely potent and specific inhibitor of acetolactate synthase in Salmonella typhimurium. J Biol Chem 259:8753–8757

    CAS  PubMed  Google Scholar 

  • LaRossa RA, Van Dyk TK (1987) Metabolic mayhem caused by 2-ketoacid imbalances. Bioessays 7:125–130

    Article  CAS  Google Scholar 

  • LaRossa RA, Van Dyk TK (1991) Physiological roles of the dnaK and groE stress proteins: catalysts of protein folding or macromolecular sponges? Mol Microbiol 5:529–534

    Article  CAS  Google Scholar 

  • LaRossa RA, Van Dyk TK (2000) Applications of stress responses for environmental monitoring and molecular toxicology. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, DC, pp 453–468

    Google Scholar 

  • LaRossa R, Kuner J, Hagen D et al (1983) Developmental cell interactions of Myxococcus xanthus: analysis of mutants. J Bacteriol 153:1394–1404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan B, Palioura S, Sabina J et al (2008) Quality control despite mistranslation caused by an ambiguous genetic code. Proc Natl Acad Sci USA 105:16502–16507

    Article  CAS  Google Scholar 

  • Stephens JC, Artz SW, Ames BN (1975) Guanosine 5′-diphosphate 3′-diphosphate (ppGpp): positive effector for histidine operon transcription and general signal for amino-acid deficiency. Proc Natl Acad Sci USA 72:4389–4393

    Article  CAS  Google Scholar 

  • Storz G, Zheng M (2000) Oxidative stress. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, DC, pp 453–468

    Google Scholar 

  • Van Dyk TK, Majarian WR, Konstantinov KB et al (1994) Rapid and sensitive pollutant detection by induction of heat shock-bioluminescence gene fusions. Appl Environ Microbiol 60:1414–1420

    PubMed  PubMed Central  Google Scholar 

  • Van Dyk TK, Ayers BL, Morgan RW et al (1998) Constricted flux through the branched-chain amino acid biosynthetic enzyme acetolactate synthase triggers elevated expression of genes regulated by rpoS and internal acidification. J Bacteriol 180:785–792

    PubMed  PubMed Central  Google Scholar 

  • Van Dyk TK, Gonye GE, Reeve MJG et al (2001a) Genome-wide expression profiling with luxCDABE gene fusions. In: Case J, Herring P, Robison B et al (eds) Proceedings of the 11th international symposium on bioluminescence and chemiluminescence. World Scientific, Singapore, pp 461–464

    Google Scholar 

  • Van Dyk TK, Wei Y, Hanafey MK et al (2001b) A genomic approach to gene fusion technology. Proc Natl Acad Sci USA 98:2555–2560

    Article  Google Scholar 

  • VanBogelen RA, Abshire KZ, Pertsemlidis A et al (1996) Gene-protein database of Escherichia coli K-12, Edition 6. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 2067–2117

    Google Scholar 

  • Wanner BL (1996) Phosphorous assimilation and control of the phosphate regulon. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 1357–1381

    Google Scholar 

  • Wei Y, Lee J-M, Richmond C et al (2001) High-density microarray mediated gene expression profiling of Escherichia coli. J Bacteriol 183:545–556

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. LaRossa .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

LaRossa, R.A. (2019). Stress Response-Based Whole-Cell Biosensor Development: Sentinels, Serendipity, and Circuitry. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_113-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_113-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics