Skip to main content

Checkpoint Inhibitors in the Treatment of Metastatic Melanoma

Mechanisms of Resistance to Checkpoint Immunotherapy

  • Living reference work entry
  • First Online:
Cutaneous Melanoma

Abstract

A better understanding of the mechanisms underlying cancer cells’ ability to evade and suppress the immune system have led to the development of immune checkpoint inhibitors, monoclonal antibodies that act to promote an effective antitumor immune response. CTLA-4 inhibitors, such as ipilimumab, and PD-1 inhibitors, such as pembrolizumab and nivolumab, have revolutionized the treatment of advanced melanoma, leading to dramatically improved patient outcomes and introducing the possibility of long-term survival. These agents are associated with response rates that range from 10% to 60%. While this represents a substantial improvement over standard cytotoxic chemotherapy, there is still a large subset of patients that exhibit either primary or secondary resistance to this treatment strategy. This chapter outlines the potential mechanisms behind resistance to checkpoint blockade, including factors involved in T-cell activation and recruitment as well as elements of the tumor microenvironment that play critical roles in effector T-cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agarwala SS, Moschos SJ, Johnson ML et al (2018) Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with melanoma progressing on or after a PD-1/L1 blocking antibody. J Clin Oncol 36(15):9530

    Article  Google Scholar 

  • Ahmadzadeh M, Johnson LA, Heemskerk B et al (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114:1537–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaria RN, Reddy SM, Tawbi HA et al (2018) Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med 24:1649–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari MJ, Salami AD, Chitnis T et al (2003) The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 198(1):63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ascierto PA, Melero I, Bhatia S et al (2017) Initial efficacy of anti-lymphocyte activation gene-3 (anti-LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti-PD-1/PD-L1 therapy. J Clin Oncol 35:9520

    Article  Google Scholar 

  • Ascierto PA, Long GV, Robert C et al (2018) Survival outcomes in patients with previously untreated BRAF wild-type advanced melanoma treated with nivolumab therapy: three-year follow-up of a randomized phase 3 trial. JAMA Oncol 5(2):187–194

    Article  PubMed Central  Google Scholar 

  • Asundi J, Reed C, Arca J et al (2011) An antibody-drug conjugate targeting the endothelin B receptor for the treatment of melanoma. Clin Cancer Res 17(5): 965–975

    Article  CAS  PubMed  Google Scholar 

  • Avril MF, Aamdal S, Grob JJ et al (2004) Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study. J Clin Oncol 22:1118–1125

    Article  CAS  PubMed  Google Scholar 

  • Bach EA, Aguet M, Schreiber RD (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15:563–591

    Article  CAS  PubMed  Google Scholar 

  • Barber DL, Wherry EJ, Masopust D et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687

    Article  CAS  PubMed  Google Scholar 

  • Beavis PA, Milenkovski N, Henderson MA et al (2015) Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res 3(5):506–517

    Article  CAS  PubMed  Google Scholar 

  • Blackburn SD, Shin H, Haining WN et al (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitor receptors during chronic viral infection. Nat Immunol 10:29–37

    Article  CAS  PubMed  Google Scholar 

  • Braun D, Longman RS, Albert ML (2005) A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 106: 2375–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brignone C, Escudier B, Grygar C et al (2009) A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin Cancer Res 15:6225–6231

    Article  CAS  PubMed  Google Scholar 

  • Buckanovich RJ, Facciabene A, Kim S et al (2008) Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med 14:28–36

    Article  CAS  PubMed  Google Scholar 

  • Callahan MK, Kluger H, Postow MA et al (2018) Nivolumab plus ipilimumab in patients with advanced melanoma: updated survival, response, and safety data in a phase I dose-escalation study. J Clin Oncol 36(4):391–398

    Article  CAS  PubMed  Google Scholar 

  • Caux C, Vanvervliet B, Massacrier C et al (1994) B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells. J Exp Med 180:1841–1847

    Article  CAS  PubMed  Google Scholar 

  • Chen PL, Roh W, Reuben A et al (2016) Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 6(8):827–837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Damsky WE, Curley DP, Santhanakrishnan M et al (2011) B-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 20(6):741–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Campo AB, Kyte JA, Carretero J et al (2014) Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer 134(1):102–113

    Article  PubMed  CAS  Google Scholar 

  • Demunter A, De Wolf-Peeters C, Degreef H et al (2001) Expression of the endothelin-B receptor in pigment cell lesions of the skin. Evidence for its role as tumor progression marker in malignant melanoma. Virchows Arch 438:485–491

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8: 793–800

    Article  CAS  PubMed  Google Scholar 

  • Flaherty KT, Lee SJ, Zhao F et al (2013) Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma. J Clin Oncol 31(3):373–379

    Article  CAS  PubMed  Google Scholar 

  • Fong L, Forde PM, Powderly JD (2017) Safety and clinical activity of adenosine A2a receptor (A2aR) antagonist, CPI-444, in anti-PD1/PDL1 treatment-refractory renal cell (RCC) and non-small cell lung cancer (NSCLC) patients. J Clin Oncol 35:3004

    Article  Google Scholar 

  • Fu J, Kanne DB, Leong M et al (2015) STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med 7(283): 283ra52

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallois A, Silva I, Osman I et al (2014) Reversal of natural killer cell exhaustion by TIM-3 blockade. Oncoimmunology 3(2):e946365

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao J, Shi LZ, Zhao H et al (2016) Loss of IFN-Îł pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167(2):397–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George S, Miao D, Demetri GD et al (2017) Loss of TEN associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 46(2):197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan V, Spender CN, Nezi L et al (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359:97–103

    Article  CAS  PubMed  Google Scholar 

  • Grosso JF, Kelleher CC, Harris TJ et al (2007) LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 117:3383–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzywa TM, Paskal W, Wlodarski PL (2017) Intratumor and intertumor heterogeneity in melanoma. Transl Oncol 10(6):956–975

    Article  PubMed  PubMed Central  Google Scholar 

  • Hafler JP, Maier LM, Cooper JD et al (2009) CD226 Gly307Ser association with multiple autoimmune diseases. Genes Immun 10(1):5–10

    Article  CAS  PubMed  Google Scholar 

  • Hamid O, Robert C, Daud A, et al. (2013) Safety and Tumor Responses with Lambrolizumab (Anti–PD-1) in Melanoma N Engl J Med 369:134–144

    Article  CAS  Google Scholar 

  • Hamid O, Robert C, Daud A et al (2019) Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann Oncol 30:582. https://doi.org/10.1093/annonc/mdz011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen AR, Infante JR, McArthur G et al (2016) A first-in-human phase I dose escalation study of the OX40 agonist MOXR0916 in patients with refractory solid tumors. Cancer Res 76(14 Suppl):Abstract nr CT097

    Google Scholar 

  • Harlin H, Meng Y, Peterson AC et al (2009) Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 69:3077–3085

    Article  CAS  PubMed  Google Scholar 

  • Herbst RS, Soria J-C, Kowanetz M, et al. (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients Nature 515: 563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodi FS, Lawrence D, Lezcano C et al (2014) Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res 2(7):632–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodi FS, Chiarion-Sileni V, Gonzalez R et al (2018) Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol 19(11):1480–1492

    Article  CAS  PubMed  Google Scholar 

  • Holmgaard RB, Zamarin D, Munn DH et al (2013) Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med 210:1389–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong M, Puaux AL, Huang C et al (2011) Chemotherapy induced intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res 71:6997–7009

    Article  CAS  PubMed  Google Scholar 

  • Hong DS, Schoffski P, Calvo A et al (2018) Phase I/II study of LAG525 ± spartalizumab (PDR001) in patients (pts) with advanced malignancies. J Clin Oncol 36(15 Suppl):3012

    Article  Google Scholar 

  • Hua C, Boussemart LL, Mateus C et al (2016) Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol 152(1):45–51

    Article  PubMed  Google Scholar 

  • Huang AC, Orlowski RJ, Xu X et al (2019) A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat Med 25:454–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugo W, Zaretsky JM, Sun L et al (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165(1):35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indini A, Di Guardo L, Cimminiello C et al (2019) Immune-related adverse events correlate with improved survival in patients undergoing anti-PD1 immunotherapy for metastatic melanoma. J Cancer Res Clin Oncol 145(2):511–521

    Article  CAS  PubMed  Google Scholar 

  • Jager E, Ringhoffer M, Altmannsberger M et al (1997) Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer 71:142–147

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Chan CK, Weissman IL et al (2016) Immune priming of the tumor microenvironment by radiation. Trends Cancer 2:638–645

    Article  PubMed  Google Scholar 

  • June CH, Bluestone JA, Nadler LM et al (1994) The B7 and CD28 receptor families. Immunol Today 15: 321–331

    Article  CAS  PubMed  Google Scholar 

  • Kelderman S, Schumacher TN, Haanen JB (2014) Acquired and intrinsic resistance in cancer immunotherapy. Mol Oncol 8(6):1132–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalili JS, Lio S, Rodriguez-Cruz TG (2012) Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin Cancer Res 18(19):5329–5340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Skora AD, Li Z et al (2014) Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci U S A 111(32):11774–11779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Li M, Trousil S et al (2017) Phenformin inhibitors myeloid-derived suppressor cells and enhances the anti-tumor activity of PD-1 blockade in melanoma. J Invest Dermatol 137(8):1740–1748

    Article  CAS  PubMed  Google Scholar 

  • Klocke K, Sakaguchi S, Holmdahl R et al (2016) Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc Natl Acad Sci U S A 113(17):E2383–E2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korn EL, Liu PY, Chapman JA et al (2008) Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J Clin Oncol 26(4):527–534

    Article  PubMed  Google Scholar 

  • Kotwal A, Haddox C, Block M et al (2019) Immune checkpoint inhibitors: an emerging cause of insulin-dependent diabetes. BMJ Open Diabetes Res Care 7:e000591. https://doi.org/10.1136/bmjdrc-2018-000591

    Article  PubMed  PubMed Central  Google Scholar 

  • Koyama S, Akbay EA, Li YY et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465

    Article  CAS  PubMed  Google Scholar 

  • Kurose K, Ohue Y, Wada H et al (2015) Phase Ia study of FoxP3+ CD4 Treg depletion by infusion of a humanized anti-CCR4 antibody, KW-0761, in cancer patients. Clin Cancer Res 21(19):4327–4336

    Article  CAS  PubMed  Google Scholar 

  • Kurtulus S, Sakuishi K, Ngiow SF et al (2015) TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 125(11):4053–4062

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladanyi A, Kiss J, Somlai B et al (2007) Density of DC-LAMP(+) mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother 56(9):1459–1469

    Article  PubMed  Google Scholar 

  • Le DT, Wang-Gillam A, Picozzi V et al (2015) Safety and survival with GVAX pancreas prime and listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol 33(12):1325–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256):1734–1736

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Auh SL, Wang Y et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin SD, Taft DW, Brandt CS et al (2011) Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol 41(4):902–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sun R (2018) Tumor immunotherapy: new aspects of natural killer cells. Chin J Cancer Res 30(2):173–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling A, Lofgren-Burstrom A, Larsson P et al (2017) TAP1 down-regulation elicits immune escape and poor prognosis in colorectal cancer. Oncoimmunology 6(11):e1356143

    Article  PubMed  PubMed Central  Google Scholar 

  • Long GV, Dummer R, Hamid O et al (2018) Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in patients (pts) with unresectable or metastatic melanoma: results of the phase 3 ECHO-301/KEYNOTE-252 study. J Clin Oncol 36(15):108

    Article  Google Scholar 

  • Luo Y, Liu S, Lee J et al (2013) IL-37, an inhibitor of innate and adaptive immunity, is elevated in the blood of melanoma patients. Pigment Cell Mel Res 26(6):951

    Google Scholar 

  • Maeurer MJ, Gollin SM, Martin D et al (1996) Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest 98(7):1633–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens A, Wistuba-Hamprecht K, Geukes Foppen M et al (2016) Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin Cancer Res 22(12):2908–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matson V, Fessler J, Bao R et al (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDermott DF, Sosman JA, Sznol M et al (2016) Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase I a study. J Clin Oncol 34(8):833–842

    Article  CAS  PubMed  Google Scholar 

  • McGranahan N, Furness AJS, Rosenthal R et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meric-Bernstam F, Werner T, Hodi S et al (2018) Phase I dose-finding study of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced solid tumors or lymphomas. J Immunother Cancer 6(Suppl 1):P309

    Google Scholar 

  • Meyer C, Cagnon L, Costa-Nunes CM et al (2014) Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother 63(3): 247–257

    Article  CAS  PubMed  Google Scholar 

  • Mitchell TC, Hamid O, Smith DC et al (2018) Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). J Clin Oncol 36(32):3223–3230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Munn DH, Shafizadeh E, Attwood JT et al (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189:1363–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni K, O’Neill HC (1997) The role of dendritic cells in T cell activation. Immunol Cell Biol 75:223–230

    Article  CAS  PubMed  Google Scholar 

  • Osborne DG, Domenico J, Dinarello CA, Fujita M (2017) IL-37 is highly expressed in T cells in melanoma patients and directly suppresses CD4+ T cell activation. Pigment Cell Melanoma Res 30(5):e80

    Google Scholar 

  • Ostrand-Rosenberg S, Fenselau C (2018) Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J Immunol 200(2):422–431

    Article  CAS  PubMed  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Riviere I, Gonen M et al (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378:449–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsa AT, Waldron JS, Panner A et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13(1):84–88

    Article  CAS  PubMed  Google Scholar 

  • Patel PM, Suciu S, Mortier L et al (2011) Extended schedule, escalated dose temozolomide versus dacarbazine in stage IV melanoma: final results of a randomised phase III trial (EORTC 18032). Eur J Cancer 47(10):1476–1483

    Article  CAS  PubMed  Google Scholar 

  • Peng D, Kryczek I, Nagarsheth N et al (2015) Epigenetic silencing of Th1 type chemokines shapes tumor immunity and immunotherapy. Nature 527:249–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng W, Chen JQ, Lio C et al (2016) Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Res 6(2):202–216

    CAS  Google Scholar 

  • Pickup M, Novitskiy S, Moses HL (2013) The roles of TGFB in the tumour microenvironment. Nat Rev Cancer 13(11):788–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postow MA, Callahan MK, Barker CA et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366(10):925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postow MA, Sidlow R, Hellmann MD (2018) Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378:158–168

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt J, Landsberg J, Schmid-Burgk JL et al (2017) MAPK signaling and inflammation link melanoma phenotype switching to induction of CD73 during immunotherapy. Cancer Res 77(17):4697–4709

    Article  CAS  PubMed  Google Scholar 

  • Restifo NO, Marincola FM, Kawakami Y et al (1996) Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 88(2):100–108

    Article  CAS  PubMed  Google Scholar 

  • Reuben A, Spencer CN, Prieto PA et al (2017) Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. NP J Genom Med 2:10

    Article  CAS  Google Scholar 

  • Ribas A (2012) Tumor immunotherapy directed at PD-1. N Engl J Med 366:2517–2519

    Article  CAS  PubMed  Google Scholar 

  • Ribas A (2015) Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov 5: 915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas A, Camacho LH, Lopez-Berestein F et al (2005) Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol 23:8968–8977

    Article  CAS  PubMed  Google Scholar 

  • Ribas A, Butler M, Lutzky J et al (2015) Phase I study combining anti-PD-L1 (MEDI4736) with BRAF (dabrafenib) and/or MEK (trametinib) inhibitors in advanced melanoma. J Clin Oncol 33(15S):3003

    Article  Google Scholar 

  • Ribas A, Hodi FS, Lawrence D et al (2017) KEYNOTE-022 update: phase 1 study of first-line pembrolizumab (pembro) plus dabrafenib (D) and trametinib (T) for BRAF-mutant advanced melanoma. Ann Oncol 28:430

    Google Scholar 

  • Ribeiro Gomes J, Schmerling RA, Haddad CK et al (2016) Analysis of the abscopal effect with anti-PD1 therapy in patients with metastatic solid tumors. J Immunother 39(9):367–372

    Article  CAS  PubMed  Google Scholar 

  • Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26): 2517–2526

    Article  CAS  PubMed  Google Scholar 

  • Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330

    Article  CAS  PubMed  Google Scholar 

  • Robert C, Ribas A, Hamid O et al (2018) Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J Clin Oncol 36(17):1668–1674

    Article  CAS  PubMed  Google Scholar 

  • Routy B, Le Chatelier E, Derosa L et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97

    Article  CAS  PubMed  Google Scholar 

  • Sabatos CA, Chakravarti S, Cha E et al (2003) Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol 4(11):1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Sakuishi K, Apetoh L, Sullivan JM et al (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10): 2187–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schachter J, Ribas A, Long GV et al (2017) Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet 390(10105):1853–1862

    Article  CAS  PubMed  Google Scholar 

  • Schadendorf HFS, Caroline RC, et al. (2015) Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J Clin Oncol 33(17):1889–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74

    Article  CAS  PubMed  Google Scholar 

  • Selby MJ, Engelhardt JJ, Johnston RJ et al (2016) Preclinical development of ipilimumab and nivolumab combination immunotherapy: mouse tumor models, in vitro functional studies, and cynomolgus macaque toxicology. PLoS One 11(9):e0161779. https://doi.org/10.1371/journal.pone.0161779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharabi AB, Lim M, DeWeese TL et al (2015) Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol 16(13):498–509

    Article  Google Scholar 

  • Shitara K, Nishikawa H (2018) Regulatory T cells: a potential target in cancer immunotherapy. Ann N Y Acad Sci 1417(1):104–115

    Article  CAS  PubMed  Google Scholar 

  • Simeone E, Gentilcore G, Giannarelli D et al (2014) Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma. Cancer Immunol Immunother 63(7):675–683

    Article  CAS  PubMed  Google Scholar 

  • Simon B, Uslu U (2018) CAR-T cell therapy in melanoma: a future success story? Exp Dermatol 27(12): 1315–1321

    Article  PubMed  Google Scholar 

  • Sivan A, Corrales L, Hubert N et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264): 1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder A, Makarov V, Merghoub T et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spranger S, Spaapen RM, Zha Y et al (2013) Up-regulation of PD-L1, IDO and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci Transl Med 5:200ra116. https://doi.org/10.1126/scitranslmed.3006504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic B-catenin signalling prevents anti-tumor immunity. Nature 523:231–235

    Article  CAS  PubMed  Google Scholar 

  • Spranger S, Luke JJ, Bao R et al (2016) Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc Natl Acad Sci U S A 113(48):E7759–E7768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbrink K, Jonuleit H, Muller G et al (1999) Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93(5):1634–1642

    CAS  PubMed  Google Scholar 

  • Suijkerbuijk KP, El Sharouni SY, Damen PP et al (2018) 1204P Long term disease control and abscopal effects by stereotactic radiotherapy for growing metastases during anti-PD1. Ann Oncol 29(Suppl 8):mdy288-077

    Google Scholar 

  • Sumimoto H, Imabayashi F, Iwata T et al (2006) The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 203:1651–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taube JM, Anders RA, Young GD et al (2012) Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4(127):127ra37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teulings HE, Limpens J, Jansen SN et al (2015) Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J Clin Oncol 33(7):773–781

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Drake CG, Pardoll DM (2012a) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24(2):207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topalian SL, Hodi FS, Brahmer JR et al (2012b) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai HF, Hsu PN (2017) Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer immunity and new therapeutic targets. J Biomed Sci 24:35. https://doi.org/10.1186/s12929-017-0341-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twyman-Saint Victor C, Rech AJ, Maity A et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520(7547):373–377

    Article  CAS  PubMed  Google Scholar 

  • Umansky V, Sevko A (2012) Melanoma-induced immunosuppression and its neutralization. Semin Cancer Biol 22(4):319–326

    Article  CAS  PubMed  Google Scholar 

  • Umansky V, Shevchenko I, Bazhim AV, Utikal J (2014) Extracellular adenosine metabolism in immune cells in melanoma. Cancer Immunol Immunother 63: 1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Van Allen EM, Miao D, Schilling B et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voron T, Colussi O, Marcheteau E et al (2015) VEGF-A modulates expression of inhibitor checkpoints on CD8+ T cells in tumors. J Exp Med 212(2):139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallin JJ, Bendell JC, Funke R et al (2016) Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun 7:12624. https://doi.org/10.1038/ncomms12624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Deng W, Li N et al (2018) Combining immunotherapy and radiotherapy for cancer treatment: current challenges and future directions. Front Pharmacol 9:185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weber J (2009) Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol Immunother 58:823. https://doi.org/10.1007/s00262-008-0653-8

    Article  CAS  PubMed  Google Scholar 

  • Weber J, Thompson JA, Hamid O et al (2009) Comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma. Clin Cancer Res 15:5591–5598

    Article  CAS  PubMed  Google Scholar 

  • Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolchok JD, Chiarion-Sileni V, Gonzalez R et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Workman CJ, Vignali DA (2005) Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J Immunol 182(4):1885–1891

    Article  CAS  Google Scholar 

  • Wu W, Wang W, Wang Y et al (2015) IL-37b suppresses T cell priming by modulating dendritic cell maturation and cytokine production via dampening ERK/NF-kB/S6K signaling. Acta Biochim Biophys Sin 47(8): 597–603

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Konno H, Barber GN (2016) Reurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res 76(22): 6747–6759

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Hieu T, Malarkannan S et al (2018) The structure, expression and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity and inflammation. Cell Mol Immunol 15(5):438–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto N, Muro K, Ishii H et al (2017) Anti-CC-chemokine receptor 4 (CCR) antibody mogamulizumab (Moga) and nivolumab (Nivo) combination phase I study in patients with advanced or metastatic solid tumors. Ann Oncol 28(S5):v605–v649

    Google Scholar 

  • Young A, Ngiow SF, Madore J et al (2017) Targeting adenosine in BRAF-mutant melanoma reduces tumor growth and metastasis. Cancer Res 77:4684–4696

    Article  CAS  PubMed  Google Scholar 

  • Zaretsky JM, Garcia-Diaz A, Shin DS et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375:819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Bi J, Zheng X et al (2018) Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol 19:723–732

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Zhao W, Yan C et al (2016) HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin Cancer Res 22:4119–4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F (2009) Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol 28(304):239–260

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Anderson AC, Kuchroo VK (2011) TIM-3 and its regulatory role in immune responses. Curr Top Microbiol Immunol 350:1–15

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant McArthur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Weppler, A., Lau, P., McArthur, G. (2019). Checkpoint Inhibitors in the Treatment of Metastatic Melanoma. In: Balch, C., et al. Cutaneous Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-319-46029-1_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46029-1_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46029-1

  • Online ISBN: 978-3-319-46029-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics