Skip to main content

Characterization of Additive Manufactured Scaffolds

  • Reference work entry
  • First Online:

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

Abstract

At the increasing pace with which additive manufacturing technologies are advancing, it is possible nowadays to fabricate a variety of three-dimensional (3D) scaffolds with controlled structural and architectural properties. Examples span from metal cellular solids, which find application as prosthetic devices, to bioprinted constructs holding the promise to regenerate tissues and organs. These 3D porous constructs can display a variety of physicochemical and mechanical properties depending on the used material and on the design of the pore network to be created. To determine how these properties change with changing the scaffold’s design criteria, a plethora of characterization methods are applied in the biofabrication field. In this chapter, we review the most common techniques used to characterize such fabricated scaffolds by additive manufacturing technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramowitch SD, Woo SL (2004) An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory. J Biomech Eng 126(1):92–97. https://doi.org/10.1115/1.1645528

    Article  PubMed  Google Scholar 

  • Barsoukov E (2005) Impedance spectroscopy: theory, experiment, and applications (edited by J Ross Macdonald), 2nd. edn isbn:978-0-471-64749-2.

    Google Scholar 

  • Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39(3):217–226

    Article  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic-Force Microscope. Phys Rev Lett 56(9):930–933

    Article  CAS  PubMed  Google Scholar 

  • Boffito M, Bernardi E, Sartori S, Ciardelli G, Sassi MP (2015) A mechanical characterization of polymer scaffolds and films at the macroscale and nanoscale. J Biomed Mater Res A 103:162–169

    Article  CAS  PubMed  Google Scholar 

  • Carrabba M, De Maria C, Oikawa A, Reni C, Rodriguez-Arabaolaza I, Spencer H, Slater S, Avolio E, Dang Z, Spinetti G, Madeddu P, Vozzi G (2016) Design, fabrication and perivascular implantation of bioactive scaffolds engineered with human adventitial progenitor cells for stimulation of arteriogenesis in peripheral ischemia. Biofabrication 8(1):015020

    Article  CAS  PubMed  Google Scholar 

  • Castilho M, Dias M, Vorndran E, Gbureck U, Fernandes P, Pires I, Gouveia B, Armés H, Pires E, Rodrigues J (2014) Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement. Biofabrication 6(2):025005

    Article  PubMed  Google Scholar 

  • Cheah CM, Chua CK, Leong KF, Chua SW (2003) Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: investigation and classification. Int J Adv Manuf Technol 21(4):291–301

    Article  Google Scholar 

  • Clarke AR (2002) Microscopy techniques for materials science. CRC Press (electronic resource)

    Chapter  Google Scholar 

  • de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863

    Article  Google Scholar 

  • De Maria C, Giusti S, Mazzei D, Crawford A, Ahluwalia A (2011) Squeeze pressure bioreactor: a hydrodynamic bioreactor for noncontact stimulation of cartilage constructs. Tissue Eng Part C Methods 17(7):757–764

    Article  CAS  PubMed  Google Scholar 

  • De Maria C, De Acutis A, Vozzi G (2015) Indirect rapid prototyping for tissue engineering. In: Essential of 3D biofabrication and translation. Elsevier. isbn:978-0-12-800972-7

    Google Scholar 

  • Della Volpe C, Brugnara M (2006) About the possibility of experimentally measuring an equilibrium contact angle and its theoretical and practical consequences. Contact Angle, Wettability and Adhesion 4:79–100

    CAS  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  CAS  PubMed  Google Scholar 

  • Dias MR, Fernandes PR, Guedes JM, Hollister SJ (2012) Permeability analysis of scaffolds for bone tissue engineering. J Biomech 45:938–944

    Article  CAS  PubMed  Google Scholar 

  • Doube M, Kłosowski MM, Arganda-Carreras I, Cordeliéres F, Dougherty RP, Jackson J, Schmid B, Hutchinson JR, Shefelbine SJ (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47:1076–1079. https://doi.org/10.1016/j.bone.2010.08.023

    Article  PubMed  PubMed Central  Google Scholar 

  • EC Regulation No 1394/2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004

    Google Scholar 

  • Egerton RF (2005) Physical principles of electron microscopy: an introduction to TEM, SEM, and AEM. Springer, New York

    Book  Google Scholar 

  • Ehret R, Baumann W, Brischwein M, Schwinde A, Stegbauer K, Wolf B (1997) Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens Bioelectron 12(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • Eshraghi S, Das S (2010) Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater 6(7):2467–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujie T, Desii A, Ventrelli L, Mazzolai B, Mattoli V (2012) Inkjet printing of protein microarrays on freestanding polymeric nanofilms for spatio-selective cell culture environment. Biomed Microdevices 14(6):1069–1076

    Article  CAS  PubMed  Google Scholar 

  • Fung YC, Perrone N, Anliker M (1972) Stress strain history relations of soft tissues in simple elongation. In: Biomechanics: its foundations and objectives. Prentice Hall, Englewood Cliffs, pp 181–207

    Google Scholar 

  • Ge Z, Yang F, Goh JCH, Ramakrishna S, Lee EH (2006) Biomaterials and scaffolds for ligament tissue engineering. J Biomed Mater Res A 77:639–652

    Article  CAS  PubMed  Google Scholar 

  • Giaever I, Keese CR (1984) Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci USA 81(12):3761–3764

    Article  CAS  PubMed  Google Scholar 

  • Giaever I, Keese CR (1991) Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci USA 88(17):7896–7900

    Article  CAS  PubMed  Google Scholar 

  • Giessibl FJ, Trafas BM (1994) Piezoresistive cantilevers utilized for scanning tunneling and scanning force microscope in ultrahigh vacuum. Rev Sci Instrum 65(6):1923

    Article  CAS  Google Scholar 

  • Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein J (2003) Scanning electron microscopy and x-ray microanalysis. Kluwer Adacemic/Plenum Pulbishers, New York

    Book  Google Scholar 

  • Groll J, Boland T, Blunk T, Burdick JA, Cho DW, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu W, Takeuchi S, Vozzi G, Woodfield TB, Xu T, Yoo JJ, Malda J (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1):013001

    Article  CAS  Google Scholar 

  • Guillemot F, Mironov V, Nakamura M (2010) Bioprinting is coming of age: report from the international conference on bioprinting and biofabrication in Bordeaux (3B'09). Biofabrication 2:010201

    Article  PubMed  Google Scholar 

  • Ho ST, Hutmacher DW (2006) A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27(8):1362–1376

    Article  CAS  PubMed  Google Scholar 

  • Hoque ME, Hutmacher DW, Feng W, Li S, Huang MH, Vert M, Wong YS (2005) Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering. J Biomater Sci Polym Ed 16(12):1595–1610

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Pan X, Li S, Peng X, Xiong C, Fang J (2011) A digital volume correlation technique for 3-D deformation measurements of soft gels. Int J Appl Mech 3(2):335–354

    Article  Google Scholar 

  • Hutmacher D, Woodfield T, Dalton P, Lewis J (2008) Scaffold design and fabrication in tissue engineering. In: Tissue engineering, pp 403–454. isbn:978-0-12-370869-4

    Chapter  Google Scholar 

  • Ibáñez L, Schroeder W, Ng L, Cates J, Consortium TIS, Hamming R (2003) The ITK software guide. Kitware, Inc., New York

    Google Scholar 

  • Kemppainen J (2008) Mechanically stable solid free form fabricated scaffolds with permeability optimized for cartilage tissue engineering. Dissertation, University of Michigan, USA

    Google Scholar 

  • Kemppainen J, Hollister S (2010) Differential effects of designed scaffold permeability on chondrogenesis by chondroyctes and bone marrow stromal cells. Biomaterials 31:279–287

    Article  CAS  PubMed  Google Scholar 

  • Kubitscheck U (2013) Fluorescence microscopy: from principles to biological applications. Wiley-Blackwell, Weinheim. isbn:978-3-527

    Book  Google Scholar 

  • Li J, Mak A (2005) Hydraulic permeability of polyglycolic acid scaffolds as a function of biomaterial degradation. J Biomater Appl 19:253–266

    Article  CAS  PubMed  Google Scholar 

  • Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malda J, Woodfield TB, van der Vloodt F, Wilson C, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2005) The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 26(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJ, Groll J, Hutmacher DW (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028

    Article  CAS  Google Scholar 

  • Masaeli E, Morshed M, Nasr-Esfahani MH, Sadri S, Hilderink J, van Apeldoorn A, van Blitterswijk CA, Moroni L (2013) Fabrication, characterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PLoS One 8(2):e57157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattioli-Belmonte M, De Maria C, Vitale-Brovarone C, Baino F, Dicarlo M, Vozzi G (2015) Pressure-activated microsyringe (PAM) fabrication of bioactive glass-poly(lactic-co-glycolic acid) composite scaffolds for bone tissue regeneration. J Tissue Eng Regen Med. https://doi.org/10.1002/term.2095

  • Menard KP (1999) DMA: introduction to the technique, its applications and theory. CRC Press, Boca Raton

    Google Scholar 

  • Moroni L, de Wijn JR, van Blitterswijk CA (2006) 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27:974–985

    Article  CAS  PubMed  Google Scholar 

  • Nadeem D, Kiamehr M, Yang X, Su B (2013) Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 33(5):2669–2678

    Article  CAS  PubMed  Google Scholar 

  • Nitzsche H, Metz H, Lochmann A, Bernstein A, Hause G, Groth T, Mäder K (2009) Characterization of scaffolds for tissue engineering by benchtop-magnetic resonance imaging. Tissue Eng Part C Methods 15(3):513–521. https://doi.org/10.1089/ten.TEC.2008.0488

    Article  PubMed  CAS  Google Scholar 

  • Oest ME, Dupont KM, Kong HJ, Mooney DJ, Guldberg RE (2007) Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res 25(7):941–950

    Article  CAS  PubMed  Google Scholar 

  • Orsi G, De Maria C, Montemurro F, Chauhan VM, Aylott JW, Vozzi G (2015) Combining inkjet printing and sol-gel chemistry for making pH-sensitive surfaces. Curr Top Med Chem 15:271–278

    Article  CAS  PubMed  Google Scholar 

  • Panetta J, Zhou Q, Malomo L, Pietroni N, Cignoni P, Zorin D (2015) Elastic textures for additive fabrication. ACM Trans on Graphics – Siggraph 34(4):12

    Google Scholar 

  • Park CH, Rios HF, Jin Q, Sugai JV, Padial-Molina M, Taut AD, Flanagan CL, Hollister SJ, Giannobile WV (2012) Tissue engineering bone-ligament complexes using fiber-guiding scaffolds. Biomaterials 33(1):137–145

    Article  CAS  PubMed  Google Scholar 

  • Rainer A, Giannitelli SM, Accoto D, De Porcellinis S, Guglielmelli E, Trombetta M (2012) Load-adaptive scaffold architecturing: a bioinspired approach to the design of porous additively manufactured scaffolds with optimized mechanical properties. Ann Biomed Eng 40(4):966–975

    Article  PubMed  Google Scholar 

  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2013) Biomaterials science, 3rd edn. Elsevier Academic Press, San Diego/London. ISBN:978-0-12-374626-9

    Chapter  Google Scholar 

  • Shirazi RN, Ronan W, Rochev Y, McHugh P (2016) Modelling the degradation and elastic properties of poly(lactic-co-glycolic acid) films and regular open-cell tissue engineering scaffolds. J Mech Behav Biomed Mater 54:48–59

    Article  CAS  PubMed  Google Scholar 

  • Sudarmadji N, Tan JY, Leong KF, Chua CK, Loh YT (2011) Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater 7(2):530–537

    Article  CAS  PubMed  Google Scholar 

  • Sutton MA, Orteu JJ, Schreier HW (2009) Image correlation for shape, motion and deformation measurements. Springer, New York. isbn:978-0-387-78746-6

    Google Scholar 

  • Tirella A, Ahluwalia A (2012) The impact of fabrication parameters and substrate stiffness in direct writing of living constructs. Biotechnol Prog 28(5):1315–1320

    Article  CAS  PubMed  Google Scholar 

  • Tirella A, Vozzi F, Vozzi G, Ahluwalia A (2011) PAM2 (piston assisted microsyringe): a new rapid prototyping technique for biofabrication of cell incorporated scaffolds. Tissue Eng Part C Methods 17(2):229–237

    Article  PubMed  Google Scholar 

  • Tomlins P (2015) Characterization and design of tissue scaffold. Woodhead Publishing, Cambridge, UK/Waltham/Kidlington. ISBN:9781782420958

    Google Scholar 

  • Urciuolo A, Quarta M, Morbidoni V, Gattazzo F, Molon S, Grumati P, Montemurro F, Tedesco FS, Blaauw B, Cossu G, Vozzi G, Rando TA, Bonaldo P (2013) Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat Commun 4:1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Burkersroda F, Schedl L, Göpferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23(21):4221–4231

    Article  Google Scholar 

  • Whulanza Y, Ucciferri N, Domenici C, Vozzi G, Ahluwalia A (2011) Sensing scaffolds to monitor cellular activity using impedance measurements. Biosens Bioelectron 26(7):3303–3308

    Article  CAS  PubMed  Google Scholar 

  • Whulanza Y, Battini E, Vannozzi L, Vomero M, Ahluwalia A, Vozzi G (2013) Electrical and mechanical characterisation of single wall carbon nanotubes based composites for tissue engineering applications. J Nanosci Nanotechnol 13(1):188–197

    Article  CAS  PubMed  Google Scholar 

  • Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Jones D, Yue S, Lee PD, Jones JR, Sutcliffe CJ, Jones E (2013) Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants. Mater Sci Eng C Mater Biol Appl 33(7):4055–4062

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project/research has been made possible with the support of the Dutch Province of Limburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Criscenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Criscenti, G., De Maria, C., Vozzi, G., Moroni, L. (2018). Characterization of Additive Manufactured Scaffolds. In: Ovsianikov, A., Yoo, J., Mironov, V. (eds) 3D Printing and Biofabrication. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-45444-3_4

Download citation

Publish with us

Policies and ethics